在堆中搜索不是第一优先级,因为使用堆的目的是将最大(或者最小)的节点放在最前面,从而快速的进行相关插入、删除操作。 4、堆的操作 创建堆:创建小顶堆 1.将数组顺序添加到堆中。(此时堆还不算小顶堆) 2.调整堆为小顶堆 注意: 1.for(j=(heap->Size-1)/2;j>=0;j--):比如我下面堆中有十个元素,...
* 不符合规则的点(这里是小根堆,规则即父节点最小),与子节点中较小的(因为是小根堆)交换(直至符合为止)*/voidSink(int*heap,intheapSize,inti) {while(LeftChildIndex(i) <heapSize) {intsmallOneIndex =LeftChildIndex(i);intleftVal =heap[LeftChildIndex(i)];if(RightChildIndex(i) <heapSize) {int...
二叉堆又可分为大堆(max-heap)和小堆(min-heap),大堆中父节点(parent node)数值均大于子节点(child node)数值,小堆则相反,这样可以保证树中最大的元素(或最小)的元素存储在堆顶(根节点)。 二叉堆能保证树中最大的元素处在堆顶,这与优先队列要求优先级最高的元素排在队首相似,因此可以使用二叉堆来实现优...
这是最常用的构造函数,它创建一个空的优先队列。默认情况下,底层容器是 std::vector,比较函数是 std::less<T>,其中 T 是存储在优先队列中的元素类型。 std::priority_queue<int> pq; 2. 使用自定义比较函数 此构造函数允许你使用自定义的比较函数。例如,你可以使用 std::greater<T> 来创建一个最小堆。
优先队列的完全二叉树表示: 堆得两个特性 结构性:用数组表示的完全二叉树; 有序性:任一结点的关键字是其子树所有结点的最大值(或最小值) “最大堆(MaxHeap)”,也称“大顶堆”:最大值 “最小堆(MinHeap)”,也称“小顶堆”:最小值 堆的例子如上。
1 二叉堆结构:完全二叉树,可以用数组来表示。设根节点序号为n,则左右两个子节点序号分别为2n,2n+1。其中最小堆定义为父结点的值总是小于或等于任何一个子节点的键值。我们用二叉堆结构来实现优先队列,定义优先队列结构体如下所示: 2 初始化优先队列:需要传递队列的容量作为参数。因为数组的序号从0开始,...
与标准队列不同,优先队列只允许访问队头元素,不允许访问其余的数据,由于堆的特殊性质,堆顶元素的优先权最高(或者最低),访问其余元素没有意义,因此,优先队列只允许访问队头元素,这和栈的访问类型类似所以使用栈访问栈顶的命名top 函数原型是: reference& top(); ...
这是最常用的构造函数,它创建一个空的优先队列。默认情况下,底层容器是std::vector,比较函数是std::less<T>,其中T是存储在优先队列中的元素类型。 std::priority_queue<int> pq; 2. 使用自定义比较函数 此构造函数允许你使用自定义的比较函数。例如,你可以使用std::greater<T>来创建一个最小堆。
我们在介绍《什么是优先队列》的时候就注意到,如果每次都删除堆顶元素,那么将会得到一个有序的数据。因此,我们可以利用二叉堆来对数据进行排序。点我查看本文代码地址。 堆排序分析 通过前面的学习我们可以看到,如果构建一个二叉堆,最后每次从堆顶取出一个元素,那么最终取出元素就是有序的,不过如果要用来对数据按照从...
优先队列就是大顶堆,队头元素最大。 下面简单常用的操作。 //push() :入队 //pop() :出队 //top() : 取队首元素(但不删除) #include<iostream> #include<queue> #include<vector> using namespace std; int main(void){ //greater 是从小到大,默认是从大到小 ...