对illumina数据进行处理,利用 RNA-Seq 发现新的 RNA 变体和剪接位点,或量化 mRNA 以进行基因表达分析等。对两组或多组样本的转录组数据,通过差异表达分析和对所发现的差异表达基因集合进行功能富集分析以推断生物学功能。 数据准备: 数据下载: Humangenome(GRCh38/hg3):Index of /goldenPath/hg38/chromosomes (ucs...
ls/home/RNA-seq/fastq/*_R1.fq.gz>1ls/home/RNA-seq/fastq/*_R2.fq.gz>2#使用cut命令根据/分隔符提取第5个字段(第一个字段为空,完整文件路径在第5个位置),再次使用cut根据_分隔符提取第1个字段(样本名),并将结果保存到文件0中。ls/home/RNA-seq/fastq/*_R2.fq.gz|cut-d"/"-f5|cut-d"_"-...
scDEAL突出了以下几个方面:(i)它可以使用来自癌症药物敏感性基因组学(GDSC)数据库和癌细胞系百科全书(CCLE)的大量bulk RNA-seq药物反应信息来训练和优化模型;(ii)为了考虑bulk数据和scRNA-seq数据之间的数据结构差异,scDEAL协调单细胞和bulk数据的嵌入,以确保药物反应标签可从bulk数据转移到单细胞数据;(iii)为了避免...
普通转录组测序(Bulk RNA-seq)是提取组织、器官、群细胞的TotalRNA进行测序,得到的是一群细胞中单个基因的平均表达水平,用来比较不同组织间的表达差异,但对内部细胞异质性较强的系统很多异常基因表达的信息会出现丢失。单细胞转录组测序(scRNA-seq)在单个细胞水平上构建每个细胞的基因表达谱,反映细胞异质性,但...
普通转录组测序(Bulk RNA-Seq)是提取组织、器官、群细胞的Total RNA进行测序,得到的是一群细胞中单个基因的平均表达水平,用来比较不同个体或同一个体的不同组织间的表达差异,但对内部细胞异质性较强的系统,如肿瘤组织,很多异常细胞的基因表达的信息会丢失,但是成本较低,技术成熟、通量高。
BayesPrism使用从匹配或相似组织类型收集的scRNA-seq样本,对大量RNA-seq(和空间转录组学)进行细胞类型和基因表达反褶积。将scRNA-seq作为先验信息,估计P(θ,Z|X,ϕ),即细胞类型分数θ和细胞类型特异性基因表达Z在每个群体中的联合后验分布,条件是参考ϕ和每个观察群体X。
第一步,Bulk thymic RNA-seq samples were downsampled 50 times ranging from 100% to 2.5% sequencing depth, using the downsampleMatrix from the DropletUtils library。bulk的数据处理采用的是“downsample”的方式,这是一个术语,这里就是不同的测序深度。
3. LM22主要对于肿瘤微环境中的免疫细胞分析。 所以,建议大家使用CIBERSORT进行免疫浸润分析时,最好利用单细胞转录组数据构建一个自己研究疾病相关的免疫细胞矩阵,再通过该矩阵去评估bulkRNAseq组织测序的免疫细胞组成,从而更准确的进行免疫浸润分析。有脚本需求的伙伴可以单独联系我。
联合分析Bulk RNA-Seq与单细胞测序数据,可对肿瘤组织内的细胞群进行鉴定与细分,探究不同细胞群间基因表达的异质性,并获取与肿瘤相关的细胞群、通路、转录因子及特征基因集。对于三阴乳腺癌患者,通过单细胞测序发现不同的细胞亚群,如CTL、MyCAFs、iCAFs、dPVL和imPVL,并分析其特征基因集与免疫逃逸的...
批量RNA测序(bulk RNA-seq)可以在给定时间内揭示肿瘤中所有基因和TME的存在及数量,但如果没有细胞反卷积技术,仅凭总RNA表达量无法确定单个RNA分子的细胞起源。近期,科研人员开发了基于深度学习的反卷积方法,但这些方法往往需要对相同组织...