转录组测序(bulk RNA-Seq)分析主要包括上游数据处理,下游数据分析。 上游数据处理是指将测得的原始的reads变成基因表达矩阵。 下游数据分析是指对表达矩阵根据生物学问题和意义进行可视化分析。 一 上游数据处理 1.质量控制:对原始测序数据进行质量评估,检查测序质量指标如序列长度分布、测序错误率等,确保数据的准确性和...
对illumina数据进行处理,利用 RNA-Seq 发现新的 RNA 变体和剪接位点,或量化 mRNA 以进行基因表达分析等。对两组或多组样本的转录组数据,通过差异表达分析和对所发现的差异表达基因集合进行功能富集分析以推断生物学功能。 数据准备: 数据下载: Humangenome(GRCh38/hg3):Index of /goldenPath/hg38/chromosomes (ucs...
这次介绍的流程主要由A中的数据的质控(Trim_galore)、数据比对(Hisat2)、数据的定量(Featurecounts和cufflinks)三部分构成。(后续的差异分析在R中完成,因此另行介绍,每个软件的详细说明有空也会另行介绍) RNA-SEQ.png 1.数据的质控(Trim_galore) 测序完成后,分析的起点是数据文件,其中包含称为碱基的测序读数,通常...
rownames(DEG_DESeq2_2) <- DEG_DESeq2_2$SYMBOL#[1] 19249 9 这时准备基因排序向量时需要小心去除转换失败的基因。 DEG_DESeq2_2 <- na.omit(DEG_DESeq2_2[,c("log2FoldChange","ENTREZID")]) DEG_DESeq2_2 <- DEG_DESeq2_2[order(DEG_DESeq2_2$ENTREZID),] DEG_DESeq2_2 <- DEG...
写在开头:在这一个合集中,我将详细介绍bulk RNA-seq实际数据分析的流程,有哪些注意的地方以及一些小技巧 首先是获取测序数据:如果是自己的测序数据,直接从公司给的账号中下载各个样本的RawData(fastq格式)即可。 如果想要分析公共数据,在GEO数据库输入文章中给出的登录号,如GSE184771,这些数据通常是经过质控、数据归...
转录组测序(bulk RNA-Seq)的详细分析流程转录组测序分析分为两个主要阶段:上游数据处理和下游数据分析,它们各自包含一系列步骤以揭示基因表达的深度洞察。上游数据处理首先,进行质量控制,通过fastqc和multiqc评估数据的准确性和可靠性,关注序列长度分布和测序错误率等指标。接着,使用trim-galore预处理...
【1】Bulk RNA-seq和scRNA-seq数据收集与预处理 文献解读 TCGA、GEO公共数据下载 差异表达基因分析 富集分析 【翰佰尔生物】, 视频播放量 2573、弹幕量 0、点赞数 99、投硬币枚数 53、收藏人数 372、转发人数 31, 视频作者 翰佰尔生物, 作者简介 官网:henbio.com/tools |
在进行Bulk-RNAseq数据分析时,首要步骤是使用STAR和Rsubread软件进行比对和定量,最终目的是获取counts文件。首先,需要在服务器上安装Anaconda,然后下载并安装STAR。在安装成功后,需要构建基因组索引文件,这需要提供基因组的fa文件和注释的gtf文件。通过输入命令,可以构建所需的索引文件。接下来,利用STAR...
bulk RNA 数据合并R语言 r语言rnaseq 数据gsea分析,目前基于RNA做分析的文章中几乎都有GSEA的分析内容,并且都是出现在正文,那么这个也是表达基因筛选的一种重要方式,下面我将整个流程梳理一下,供大家参考。GSEA(GeneSetEnrichmentAnalysis),即基因集富集分析,它的