在这里,我们将采用类似于 Diffbind 中的方法,并在 ATACseq 分析中合理建立。 1. 识别非冗余峰 首先,我们将定义至少 2 个样本中存在的一组非冗余峰,并使用这些峰使用 DESeq2 评估无核小体 ATACseq 信号的变化。在这里,我们使用与 ChIPseq 相同的方法来推导差异的一致峰。 我们在所有样本中取峰并将它们减少为...
而对于ATAC-seq,可以使用DESeq2,也可以用DiffBind。当然在这个DiffBind文档里,官方也使用了这个包来进行ChIP-seq差异peak的分析,所以到底使用哪种方法还是看自己的经验和分析出的结果能不能通过实验的验证。 前言:DiffBind介绍 该包的主要重点是确定样本之间有差异的位点。它包括支持峰集处理的功能,包括重叠和合并峰集...
在ATAC-Seq数据中没有control,controlID和bamControl删去就好。PeakCaller和PeakFormat用一个就好,支持的格式有 下面以这个sample.test.csv为例做演示: 1SampleID,Factor,Replicate,bamReads,Peaks,PeakCaller,Tissue2tt.e11.5.Rep1,tt.e11.5,1,/home/user/project/atac_seq/bam/tt.e11.5.rep1.bt2.mm10.sort....
1.准备输入数据: 首先,需要准备ATAC-seq数据,这通常是peak调用软件(如MACS2)产生的peak文件。对于多个样本,你需要为每个样本准备一个peak文件。 2.创建样本表: 在DiffBind中,你需要创建一个样本表(通常是CSV或者Excel格式),包含样本信息,如样本名称、对应的peak文件路径、条件(比如处理组和对照组)等。 3.读取数据...
在这里,我们将采用类似于 Diffbind 中的方法,并在 ATACseq 分析中合理建立。 1. 识别非冗余峰 首先,我们将定义至少 2 个样本中存在的一组非冗余峰,并使用这些峰使用 DESeq2 评估无核小体 ATACseq 信号的变化。在这里,我们使用与 ChIPseq 相同的方法来推导差异的一致峰。
("DESeq2") setwd("F:/xx/xx/DIFFBIND") library(edgeR) library(DESeq2) library(DiffBind) library(rio) library(tidyverse) dbObj<- dba(sampleSheet="./your.csv")#读取峰集(peaksets) dbObj<- dba.count(dbObj, bUseSummarizeOverlaps=TRUE)#计算reads dba.plotPCA(dbObj, attributes=DBA_TREATMENT...
在这里,我们将采用类似于 Diffbind 中的方法,并在 ATACseq 分析中合理建立。 1. 识别非冗余峰 首先,我们将定义至少 2 个样本中存在的一组非冗余峰,并使用这些峰使用 DESeq2 评估无核小体 ATACseq 信号的变化。在这里,我们使用与 ChIPseq 相同的方法来推导差异的一致峰。
使用DiffBind包提取ATAC-seq数据中的差异peaks主要包括以下几个步骤:1.准备输入数据:首先,需要准备ATAC-seq数据,这通常是peak调用软件(如MACS2)产生的peak文件。对于多个样本,你需要为每个样本准备一个peak文件。2.创建样本表:在DiffBind中,你需要创建一个样本表(通常是CSV或者Excel格式),包含样本...
在 R/Bioconductor 的ATAC-seq分析中,我们重点关注如何通过差异分析揭示开放区域的变化。首先,我们处理非冗余峰的识别,借鉴 Diffbind 方法,确保在至少两个样本中存在并利用DESeq2评估信号变化。我们从所有样本中提取峰值,去除黑名单和ChrM中的干扰,形成存在矩阵。接着,我们进行差异计数。通过rowSums函数...
RNA-seq的QC比较简单,所以如果Cut&Run有对应的RNA-seq,那就直接看DEG周围的peak是否有差异。 结果是必然的! Diffbind高级分析法:notebooks/projects/cut_run/HDAC-b2/pipeline/Diffbind.ipynb DBA_NORM_LIB ("lib") Normalize by library size only. Library sizes can be specified using the library parameter....