当A可逆时,若 λ是A的特征值,α是A的属于特征值λ的特征向量,则|A| / λ是 A*的特征值,α 仍是A*的属于特征值 |A| / λ 的特征向量结果一 题目 A的特征值与A*的特征值之间有什么关系? 答案 当A可逆时,若 λ是A的特征值,α是A的属于特征值λ的特征向量, 则 |A| / λ是 A*的特征值,α 仍是A*的属于特征值...
(|A|/λ)α=A*α 故A*的特征值为|A|/λ |A|=1*2*(-3)=-6 所以A*的特征值为-6/1,-6/2,-6/3,即-6,-3,2 A*—3A+2E的特征值为 -6-3+2=-7 -3-6+2=-7 2+9+2=13 所以|A*—3A+2E|=-7*-7*13=637
| λE-A | =0 是特征方程 满足方程的λ就是特征值。如果λ是A的特征值,α是属于λ的特征向量 即Aα=λα 左乘A* A*Aα=λA*α 由于 A*A= | A |E 即 | A | α= λA*α 也就是 A*α = | A |/λ α | A |/λ 就是A*的特征值,α是属于| A |/λ ...
我们这里主要讲r(A)(表示A的秩)=n-1(其中n是矩阵A的阶数)时,怎么样求出来A*的全部的特征值和全部的特征向量。 因为r(A)>n-1时,A可逆。A的伴随矩阵的特征值和特征向量,利用逆矩阵的特征值和特征式向量,就可以…
可以把它算出来),当矩阵A的秩小于n-1时,则A*为0矩阵,特征值全为0。3、伴随矩阵的特征值如果0是矩阵A的一个特征值,则0也是伴随矩阵A*的一个特征值;如果k是矩阵A的一个非零特征值,则存在非零向量a: Aa=ka则 A*Aa=kA*a |A|a=kA*a A*a=(|A|/k)a可见 |A|/k 是A*的一个特征值。
百度试题 结果1 题目请问伴随矩阵A*特征值和A特征值的关系.相关知识点: 试题来源: 解析 Aa=ka,这个式子左右同乘以A*,则A*Aa=A*ka,又A*A=AA*=|A|E,|A|Ea=kA*a,A可逆时,有A*a=(|A|/k)a反馈 收藏
设λ是A的特征值,α是A的属于特征值λ的特征向量,则Aα=λα。等式两边左乘A*,得A*Aα=λA*α。由于A*A=|A|E所以|A|α=λA*α。当A可逆时,λ不等于0。此时有A*α=(|A|/λ)α,所以|A|/λ是A*的特征值。矩阵 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;...
设A*A'x=λx,令y=A'x,则A'*Ay = A'*A*A'x=A'*λx=λ*A'x=λ*y 即λ也是A'*A的特征值。反过来也一样。
A的特征值全为0说明A不可逆 如果r(A)=n-1,r(A* )=1,可以利用伴随矩阵和原矩阵关系得出A...