1、关于为什么lnx等价于x-1,等价的理由见上图。2.对于等价问题,前提必须是无穷小函数。所以,lnx等价于x-1,必须给出自变量x趋于1的条件,这样,x-1才趋于0,即x-1是无穷小。3.此题为什么lnx等价于x-1,主要是用到等价公式,即我图中第一行等价公式。具体的为什么lnx等价于x-1,详细解的过...
当x趋于零时,limlnx=负无穷,lim(x-1)=-1。这两个函数在x趋于0时极限都不是无穷小,都不满足无穷小比阶的原则,所以就更没有说它们是等价无穷小的说法。
ln(x)等价于x-1的原因是因为ln(x)是自然对数函数,表示以e为底的对数,其中e是一个常数,约等于2.71828。对数函数的定义是y=log_b(x),其中b是底数,x是实数。而ln(x)是以e为底的对数函数,所以可以写成ln(x)=log_e(x)。对于ln(x)等价于x-1的证明,我们可以使用泰勒展开来近似计算ln(...
x趋于1时,lnx的等价无穷小是x-1。因为lnx的导数是1/x,在x=1时的值是1,lnx=1×(x-1)+o(x),你也可以直接求lnx/(x-1)在x趋于1时候的极限是1。极限思想的思维功能 极限思想在现代数学乃至物理学等学科中,有着广泛的应用,这是由它本身固有的思维功能所决定的。极限思想揭示了变量与常量...
lnx+1等价于(2k+1)πi,(k=0,±1,±2)。在实数范围内,负数是没有对数,而在复数范围内,负数是有对数的,ln(-1)=(2k+1)πi。设,-1=z=x+iy,则x=-1,y=0,Φ=arg(-1)=arctg(y/x)=arctg0=π。ln(-1)=ln|-1|+iArg(-1)。=ln|-1|+iarg(-1)+2kπ...
是等价的,但并不是lnx=x-1,而是lnx=x-1+o(x-1),两者相差一个x-1的高阶无穷小,所以原来的...
lnx等价于x-1lnx等价于x-1 套a^loga(x)=x(公式),所以e^loge(x)=x,e^ln(x)=x,所以1+e^ln(x)=1+x。证明设a^n=x,则loga(x)=n,所以a^loga(x)=a^n,所以a^loga(x)=x。 在数学中,真数x(对于底数β)的对数是βy的指数y,使得x=βy。底数β的值一定不能是1或0(在扩展到复数的复对数...
是x-1。这个等价无穷小非常常用。更一般的结论:当f(x)趋于1时,lnf(x)等价于f(x)-1。推导...
x。数函数lnx是以e为底数的函数,当x等于1时,对数函数lnx的值等于0,所以当lnx等于0时,它再加上一个实数,当然就等于这个实数,也就是说,lnx当x=1时它的值为0,再加上实数x,它依然等于这个实数,即等价于x。
ln(x) ≈ ln(1) + 1(x - 1)由于 ln(1) = 0,所以简化为:ln(x) ≈ x - 1 这个近似在 x 很接近 1 的情况下非常准确。例如,对于 x = 0.9,计算 ln(0.9) 和 0.9 - 1,结果非常接近;对于 x = 0.99,结果也是相当接近的。但是随着 x 越来越远离 1,这个近似就会变得不...