我的 1/x的泰勒公式是多少? 我来答 1个回答 #热议# 应届生在签三方时要注意什么?蒋锋400 推荐于2020-12-21 · TA获得超过2057个赞 知道大有可为答主 回答量:3903 采纳率:0% 帮助的人:1418万 我也去答题访问个人页 关注 展开全部 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐...
麦克劳林公式展开式是f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2+...+f(n)(x0)/n!*(x-x0)^n 。麦克劳林公式(Maclaurin's series)是泰勒公式的一种特殊形式,公式适用于数学学科,1719年由麦克劳林提出。运用:一般情况下遇到的极限有两种情况:(1)分子是两个或者以...
泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。
高等数学题集 高等数学题集 关注 , 发表于2023-07-02 08:33,,新疆
一、分析与解答 1.1)分析:函数的泰勒展开式要以某点为中心展开,若以原点(x=0)为中心展开,则为泰勒级数的特殊形式——麦克劳林公式,若没有考虑以x=x0,x0可以为任意值的情况,则不算完整解答了该函数的泰勒展开式。1.2)答:函数(1+x)^(-1)以x=x0为中心的泰勒展开式如下图所示:二、...
1/(1-x)泰勒展开式 要详细过程 答案是1+x+x2+x3…… 泰勒展开式又叫幂级数展开法 f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)^2+...+f(n)(a)/n!*(x-a)^n 现在f(x)=1/(1-x) 那么求导得到f'(x)= -1/(1-x)^2 *(-1)=1/(1-x)^2 f''(x...
若函数f(x)在包含x₀的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:其中,表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x₀处的泰勒展开式,剩余的Rₙ(x)是泰勒公式的余项,是(x-x₀...
+…… ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1) sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞<x<∞) cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞<x<∞)
第二种是对的。第一种的错误是没有理解幂级数的定义,在x=x0处展开成幂级数,意思是级数必须表示成 ∑an·(x-x0)^n (an是常数)的形式。而第一种x^2·(x-x0)^n是不符合要求的。
泰勒公式集中体现了微积分“逼近法”的精髓,在近似计算上有独特的优势。利用泰勒公式可以将非线性问题化为线性问题,且具有很高的精确度,因此其在微积分的各个方面都有重要的应用。泰勒公式可以应用于求高阶导数在某点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。