如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。
不定积分的公式:1、∫adx=ax+C,a和C都是常数 2、∫x^adx=[x^(a+1)]/(a+1)+C,其中a为常数且a≠-1 3、∫1/xdx=ln|x|+C 4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠1 5、∫e^xdx=e^x+C 6、∫cosxdx=sinx+C 7、∫sinxdx=-cosx+C 8、∫cotxdx=ln|sinx|+C=-ln...
1/cosx^2的不定积分是tan(x)+C。计算过程如下:1/(cos x)^2=sec^2(x), d(tan(x))/dx=sec^2(x),所以 1/(cos x)^2的不定积分是 tan(x)+C。 在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F′ = f。不定积分和定积分间的关系由微积分基本定理确...
=∫(sinx^2+cosx^2)dx/cosx^2 =∫(sinxd-cosx)/cosx^2+∫dsinx/cosx =∫sinxd(1/cosx)+∫dsinx/cosx =sinx/cosx-∫dsinx/cosx+∫dsinx/cosx+C =tanx+C
结果为xsinx+cosx。解题过程:∫xcosxdx =∫xdsinx =xsinx-∫sinxdx =xsinx+cosx 依据:分部积分法 推导:其实是由乘积求导法导出的 因为:[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)所以:∫[f'(x)g(x)+f(x)g'(x)]dx=f(x)g(x)+C 然后:∫f(x)g'(x)dx=f(x)g(x)- ∫f...
你好!答案如图所示:无论哪种情况,这积分都是不初等的 很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报 。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。如果问题解决后,请点击下面的“选为满意答案”学习高等数学最重要是持之以恒,其实...
∫1/(1+cos²x)dx=∫sec²x/(sec²x+1)dx=∫1/(tan²x+2) dtanx=1/√2 arctan(tanx/√2)+c。cos导数是-sin,反余弦函数(反三角函数之一)为余弦函数y=cosx(x∈[0,π])的反函数,记作y=arccosx或cosy=x(x∈[-1,1])。由原函数的图像和它的反函数的...
回答如下:1+cosx=2[cos(x/2)]^2 1/(1+cosx)=0.5[sec(x/2)]^2 ∫dx/(1+cosx)=∫0.5[sec(x/2)]^2dx =∫[sec(x/2)]^2d0.5x =∫dtan(x/2)=tan(x/2)+c 直接积分法 直接积分法简单的理解就是使用函数导数公式能一两步写出结果的情形。例如:y=ax,则y‘=a,故而∫...
求解cosx的1次、2次、3次、4次分之一的具体步骤 在定积分以及不定积分的运算中,基本初等函数的原函数我们都是耳熟能详,记忆犹新的 但是有一些看似简单,计算起来却比较麻烦的积分,比如说cosx分之一的积分,这个积分是在基本初等函数积分公式表中的 ,但是大部分同学是背不下来,那么它是如何推导计算的呢?
∫(1/cosx^2+1)dcosx =arctan(cosx)+c