凑到积分表上的arctan公式即可
∴∫[1/(3+cosx)]dx =2∫[1/(3+cos2u)]du =2∫{1/[3+2(cosu)^2-1]}du =2∫{1/[2+2(cosu)^2]}du =∫{1/[1+(cosu)^2]du =∫{1/[2(cosu)^2+(sinu)^2]}du =∫{1/[2+(tanu)^2]}[1/(cosu)^2]du =(1/2)∫...
∫ 1/(3 + cosx) dx= (1/√2)arctan[(1/√2)tan(x/2)] + C。C为积分常数。解答过程如下:令u = tan(x/2),cosx = (1 - u²)/(1 + u²),dx = 2du/(1 + u²)∫ 1/(3 + cosx) dx = ∫ 1/[3 + (1 - u²)/(1 + u²)] · ...
x=2arctant dx=2/(1+t^2)dt cosx=(1-t^2)/(1+t^2)代入得:∫1/(3+cosx)dx =∫1/(3+(1-t^2)/(1+t^2))*2/(1+t^2)dt =∫1/(2+t^2)dt=(1/√2)arctan(t/√2)+C =(1/√2)arctan(tan(x/2)/√2)+C ...
∴∫[1/(3+cosx)]dx =2∫[1/(3+cos2u)]du =2∫{1/[3+2(cosu)^2-1]}...
简单计算一下即可,答案如图所示
令x=2u,则:u=x/2,dx=2du。∴∫[1/(3+cosx)]dx =2∫[1/(3+cos2u)]du =2∫{1/[3+2(cosu)^2-1]}du =2∫{1/[2+2(cosu)^2]}du =∫{1/[1+(cosu)^2]du =∫{1/[2(cosu)^2+(sinu)^2]}du =∫{1/[2+(tanu)^2]}...
就是万能代换。令t=tanx/2,x=2arctant,dx=2/(1+t^2)dt,cosx=(1-t^2)/(1+t^2),代入得:∫1/(3+cosx)dx=∫1/(3+(1-t^2)/(1+t^2))*2/(1+t^2)dt=∫1/(2+t^2)dt=(1/√2)arctan(t/√2)+C =(1/√2)arctan(tan(x/2)/√2)+C ...
用万能代换,令tan(x/2)=t,则 sinx=2t/(1+t^2),cosx=(1-t^2)/(1+t^2),dx=2/(1+t^2)dt原积分化为∫ 1/(2+t^2)dt=1/√2arctant/√2 +C ,其中t=tan(x/2) 结果一 题目 求不定积分∫1/(3+cosx)dx。 答案 用万能代换,令tan(x/2)=t,则 sinx=2t/(1+t^2),cosx=(1-t^...
∫1/SinxCosxdx=ln丨tanx丨+C。C是积分常数。解答过程如下: