设1*Cn1+2*Cn2+3*Cn3+……+n*Cnn=A不妨再加一项0*Cn0,则0*Cn0+1*Cn1+2*Cn2+3*Cn3+……+n*Cnn=A.由Cnk的对称性:Cnk=Cn(n-k)可得:0*Cnn+1*Cn(n-1)+2*Cn(n-2)+……+n*Cn0=A将上式倒序:n*Cn0+(n-1)*Cn1+...+0*Cnn=A... 分析总结。 一个关于二项式定理的问题结果...
计算Cn1+2Cn2+3Cn3+…+nCnn,可以采用以下方法:构造等式:Cn+Cn1x+Cn2x2+…+Cnnxn=(1+x)n,两边对x求导,得Cn1+2Cn2x+3Cn3x2+…+nCnnxn﹣1=n(1+x)n﹣1,在上式中令x=1,得Cn1+2Cn2+3Cn3+…+nCnn=n?2n﹣1.类比上述计算方法,计算Cn1+22Cn2+32Cn3+…+n2Cnn= . 参考答案: n(n+1...
k Cnk=n C(n-1)(k-1)则:Cn1+2Cn2+3Cn3+。。。+n Cnn =1*Cn1+2Cn2+3Cn3+。。。+n Cnn =nC(n-1)0+nC(n-1)1+...+nC(n-1)(n-1)=n[C(n-1)0+C(n-1)1+...+C(n-1)(n-1)]=n*2^(n-1)
解答:证明:(1)记S=Cn1+2Cn2+3Cn3+…+nCnn,倒序则S=nCnn+(n-1)Cnn-1+…+Cn1 (2分)∴2S=ncn0+nCn1+…+nCnn=n•2n ∴S=n•2n-1 …(2分)解:(2)Cn0+2Cn1+3Cn2+…+(n+1)Cnn =(Cn0+Cn1+…Cnn)+(Cn1+2Cn2+3Cn3+…+nCnn) (1分)=2n+n•2n-1<1...
令x=1,得n2n-1=Cn1+2Cn2+3Cn3+…+nCnn, 故答案为n2n-1 点评:本题主要考查二项式定理的应用,属于中等难度题型,在处理有关二项式定理有关系数问题时通常与二项式中x赋值有关. 练习册系列答案 全优训练单元过关系列答案 夺冠训练单元期末冲刺100分系列答案 ...
+Cn2• ( 1 n)2+…+Cnn•( 1 n)n只用前两项即可证明不等式的前半部分;再通过组合数的性质对等式右边进行放缩即可证明右边. 试题解析:证明:(1)记S=Cn1+2Cn2+3Cn3+…+nCnn,倒序则S=nCnn+(n-1)Cnn-1+…+Cn1(2分)∴2S=ncn0+nCn1+…+nCnn=n•2n∴S=n•2n-1…(2分)(2)...
4.计算Cn1+2Cn2+3Cn3+…+nCnn,可以采用以下方法:构造等式:Cn0+Cn1x+Cn2x2+…+Cnnxn=(1+x)n,两边对x求导,得Cn1+2Cn2x+3Cn3x2+…+nCnnxn-1=n(1+x)n-1,在上式中令x=1,得Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1.类比上述计算方法,计算Cn1+22Cn2+32Cn3+…+n2Cnn=n(n+1)•2n-2. 相...
…+(n-1)Cn(n-1)+(-1)nCnn = -n[Cn0-Cn1+Cn2+Cn3+……-Cn(n-1)+Cnn] = -n*[(1-1)^n] =0 故 S=0 所以Cn1-2Cn2+3Cn3+……+(-1)nCnn=0 得证.
根据Cn1+Cn2+...+CnN=(1+X)^n,其中使X=1因为(1+X)^n=Cn1X+Cn2X^2+Cn3X^3+...+CnNX^n所以对(1+X)^n求导即为右边=Cn1+2Cn2X+3Cn3X^2+...+nCnNX^(n-1)左边=n(1+X)^n再令X=1,左右相等即可
解答:解:∵Cn0+Cn1+Cn2+…+Cnn=2n ∴Cn1+Cn2+…+Cnn-1=2n-1 ∵cn1+cn2+cn3+…+cnn=63 ∴2n-1=63解得n=6 ∴(x- 1 x )n=(x- 1 x )6的展开式的通项为Tr+1= C r 6 x6-r(- 1 x )r=(-1)rC6rx6-2r 令6-2r=0得r=3 ...