微分方程定义:含导数或微分的方程称为微分方程,其一般形式为 F(x,y,y^{'}...y^{(n)})=0 微分方程的阶数:微分方程中所含的导数或微分的最高阶数称为微分方程的阶数 微分方程的解:使… 火线炮灰小兵 数学分析习题课 (22.1.6) 铁球 学习微积分/高等数学(持续更新) 历史部分节选/转载自google搜索 ...
用部分微分法求e^x·(Sinx)^2 相关知识点: 试题来源: 解析 e^x(sinx)^2=e^x(1-cos2x)/2=e^x/2-e^xcos2x/2第一项积分为e^x/2,考虑-e^xcos2x/2-e^xcos2x/2=(-1/4)e^x(e^i2x+e^-i2x)=(-1/4)(e^(1+2i)x+e^(1-2i)x)积分得到(-1/4)(e^(1+2i)x/(1+2i)+e^...
说明:^——表示次方 y'+P(x)y=Q(x)公式:y=e^[-∫P(x)dx][∫Q(x)e^∫P(x)dxdx+C]本题中,f'(a)=2a[f(a)+1],f'(a)-2af(a)=2a y'=f'(a),y=f(a),P(x)=-2a,Q(x)=2a,代入公式,可得:f(a)=e^[-∫(-2a)da][∫2ae^∫(-2a)dada+C]=e^(a^2)...
第二部分,微分 1, ▽算符(直角坐标下)。 此算符又叫做微分算符,可以见到,这个算符同时具有微分性和矢量性,也就是说,它的内容主要是对后面的量进行微分,但同时它本身又是一个矢量。这个性质非常重要,下述很多公式和概念都由此而来。 2, 场的概念 (1) 场描述一定空间中连续分布的物理量。也就是说,当我们确定...
70 -- 11:15 App 积分部分的总结 118 4 21:34 App 高数一微分部分总结 419 -- 8:50 App 你所没见过的微积分课本系列1/∞ 191 -- 25:37 App 几种极限的计算解析 浏览方式(推荐使用) 哔哩哔哩 你感兴趣的视频都在B站 打开信息网络传播视听节目许可证:0910417 网络文化经营许可证 沪网文【2019】380...
一元微积分的三个组成部分 马克思、恩格斯以及列宁有关微积分的一些论述,是我们认识与研究微积分的指导思想,有了这个认识之后,就决定了微积分这门学科的内容是由三部分组成,即微分、积分,指出微分与积分是一对矛盾的微积分基本定理这三个部分所组成。...
用部分微分法求e^x·(Sinx)^2 扫码下载作业帮搜索答疑一搜即得 答案解析 查看更多优质解析 解答一 举报 e^x(sinx)^2=e^x(1-cos2x)/2=e^x/2-e^xcos2x/2第一项积分为e^x/2,考虑-e^xcos2x/2-e^xcos2x/2=(-1/4)e^x(e^i2x+e^-i2x)=(-1/4)(e^(1+2i)x+e^(1-2i)x)积分得到...
解:∵xdu/dx=u^3/(1-u^2)==>(1-u^2)du/u^3=dx/x ==>(1/u^3-1/u)du=dx/x ==>-1/(2u^2)-ln│u│=ln│x│-ln│C│ (C是常数)==>x/C=ue^(-1/(2u^2))==>x=Cue^(-1/(2u^2))∴方程xdu/dx=u^3/(1-u^2)的解是x=Cue^(-1/(2u^2))。
第四部分 多元函数的微分 一、限与连续 例1求下列函数的极限 (1) ;(2) 例2证明函数 分别关于 连续,但它不是二元连续函数。 例3证明:若函数 在区域G内关于变元 连续,关于变元 等度连续,则此函数在G内连续。 例4(尤格定理)设函数 分别关于 连续,且对其中一个变元单调,则此函数二元连续。 二. 导数与...
第六章 常微分方程 本章的重点内容:一阶微分的求解方法,二阶微分方程的求解方法,微分方程的简单运用 【例题 1】求微分方程 dy y x2 y2 的通解 dx x 【例题 2】设 F x f x g x, f x g x, gx f x, xR ,且 f x g x 2ex ,求 F x 的表达式 【例题 3】已知连续函数 f x ...