可导与连续的关系:可导必连续,连续不一定可导; 可微与连续的关系:可微与可导是一样的; 可积与连续的关系:可积不一定连续,连续必定可积; 可导与可积的关系:可导一般可积,可积推不出一定可导; 可微在一元函数中与可导等价,在多元函数中,各变量在此点的偏导数存在为其必要条件,其充要条件还要加上在此函数所表...
可导必连续,连续不一定可导,即可导是连续的充分条件,连续是可导的必要条件一元函数中可导与可微等价,多元函数中可微必可导,可导不一定可微,即可微是可导的充分条件,可导是可微的必要条件所以按条件强度可微≥可导≥连续可积与可导可微连续无必然关系 分析总结。 可微在一元函数中与可导等价在多元函数中各变量在此点的...
可导与连续的关系:可导必连续,连续不一定可导; 可微与连续的关系:可微与可导是一样的; 可积与连续的关系:可积不一定连续,连续必定可积; 可导与可积的关系:可导一般可积,可积推不出一定可导; 对于一元函数有,可微等价于可导,可导推出连续,连续推出可积。 对于多元函数,不存在可导的概念,只有偏导数存在。 函数...
解答一 举报 可微和可导能互相推出…但二者是不同的两个概念…可导就连续但连续却不一定可导,例如:Y=|X|在X=0出连续但不可导 解析看不懂?免费查看同类题视频解析查看解答 相似问题 求可微 可导 连续他们和偏导的关系 可导可微可连续这三者之间的关系是什么,为什么? 极限的存在.连续.可导.可微之间的关系 特别...
【解析】一元函数与多元函数连续,可导,可微之间的关系:1、一元函数涉及的是两维曲线,多元函数涉及到的是至少是三维的曲面。一元函数的可导可微只要从左右两侧考虑;多元函数的可导可微,必须从各个角度,各个方向,各个侧面,进行前后、左右、上下、侧斜等等方向的左右两侧考虑。2、一元函数,只要曲线光滑-没有尖点、没有断...
在高等数学中,连续、可微和可导都是描述函数的性质的概念。它们之间有如下联系: 1.连续性与可微性的联系:若一个函数在某一点处可微,则它在该点处也是连续的。这是因为可微性要求函数在某一点附近能够通过线性近似来描述,而线性近似的过程本质上是一个连续的过程。 2.可导性与连续性的联系:若一个函数在某一点处...
一元函数:可导必然连续,连续推不出可导,可导与可微等价。 多元函数:可偏导与连续之间没有联系,也就是说可偏导推不出连续,连续推不出可偏导。 多元函数中可微必可偏导,可微必连续,可偏导推不出可微,但若一阶偏导具有连续性则可推出可微。 以直代曲,而微分正是为了这个而产生得数学表达,因此微分是最基本的...
可导和可微是等价的,可导则在该点连续,而连续不一定可导.如:y=|x|,在x=0处连续,但不可导. 分析总结。 可导和可微是等价的可导则在该点连续而连续不一定可导结果一 题目 可导可微可连续这三者之间的关系是什么,为什么? 答案 可导和可微是等价的,可导则在该点连续,而连续不一定可导.如:y=|x|,在x=0处连...
解析 答案:函数的连续性是可导性和可微性的基础。如果一个函数在某点连续,它可能在该点可导或可微。如果一个函数在某点可导,那么它在该点必定连续,并且可微。可微性意味着函数在该点有一个线性主部,即导数存在且连续。简而言之,可导性蕴含连续性,而可微性蕴含可导性。