证明A+B的秩小于等于A的秩+B的秩 简介 线性代数有这个结论:秩(AB) ≤ min(秩(A),秩(B)) 。设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。原来A矩阵里和一化成r列非零列和剩余0列,B矩阵可以画成t列非零列和剩余0列,所以(A,B)一共有r+t列非零列,这时A,B的非零列...
这也就是所谓的Frobinius公式,他是薛尔福斯特公式公式得特列,薛尔福斯特公式:rank(ABC)>=rankAB+rankBC-rankB 其中令B=E即为Frobinius公式。