解:∵正数x,y满足3x+y=5xy,∴3x+y5xy=35y+15x=1,∴4x+3y=(4x+3y)(35y+15x)=135+12x5y+3y5x≥135+2√12x5y∙3y5x=5当且仅当12x5y=3y5x即x=12且y=1时取等号,∴4x+3y的最小值是5故选:D 已知式子变形可得35y+15x=1,进而可得4x+3y=(4x+3y)(35y+15x)=135+12x5y+3y5x,由基本...
若正数x,y满足3x+y=5xy,则4x+3y取最小值时y的值为( ).A.1B.3C.4D.5 答案 A因为正数x,y满足3x+y=5xy,所以1x+3y=5,所以4x+3y=15(1x+3y)(4x+3y)=15(13+3yx+12xy)⩾15(13+√3yx⋅12xy)=195,当且仅当3yx=12xy,即y=2x=1时等号成立,故选A. 结果二 题目 若正数x,y满足3x+y=5xy...
若正数x,y满足3x+y=5xy,则4x+3y的最小值时,y的值为()A.1B.3C.4D.5 答案 答案:A.∵3x+y=5xy,x>0,y>0,∴+=5,∴4x+3y=(4x+3y)(+)=(13++)≥(13+2)=5,当且仅当=,即y=2x=1时取等号,∴当4x+3y取得最小值时,y的值为1.故选A. 已知x、y满足的关系式,要求4x+3y取得最小值时y...
D由3x+y=5xy,得(3x+y)/(xy)= 3/y+1/x=5 所以 4x+3y=(4x+3y)⋅1/5(3/y+1/x)=1/5(4+9+(3y)/x+(12x)/y) (4+9+3≥1/5(4+9+2√(36))=5,当且仅当(3y)/x=(12x)/y ,即y=2x时,“=”成立故4x+3y的最小值为5.故选D 相关推荐 1若正数x,y满足3x+y=5xy,...
3 5y + 1 5x =1,进而可得4x+3y=(4x+3y)( 3 5y + 1 5x )= 13 5 + 12x 5y + 3y 5x ,由基本不等式求最值可得. 解答:解:∵正数x,y满足3x+y=5xy, ∴ 3x+y 5xy = 3 5y + 1 5x =1, ∴4x+3y=(4x+3y)( 3 5y + 1 5x ...
已知式子变形可得35y+15x=1,进而可得4x+3y=(4x+3y)(35y+15x)=135+12x5y+3y5x,由基本不等式求最值可得. ∵正数x,y满足3x+y=5xy,∴3x+y5xy=35y+15x=1,∴4x+3y=(4x+3y)(35y+15x)=135+12x5y+3y5x≥135+212x5y•3y5x=5当且仅当12x5y=3y5x即x=12且y=1时取等号,∴4x+3y的最小值是5...
15.2019·烟台调研·A若正数x,y满足3x+y=5xy,15.2019·烟台调研·A若正数x,y满足3x+y=5xy, 相关知识点: 试题来源: 解析 15由.3x+y=5xy得, _ , 15由.3x+y=5xy得, _ , 所以 15由.3x+y=5xy得, _ , 所以 15由.3x+y=5xy得, _ ,
因为正数x,y满足x+3y=5xy, 所以{3\over5x}+{1\over5y}=1, 所以3x+4y=({3\over5x}+{1\over5y})(3x+4y)={9\over5}+{4\over5}+{12y\over5x}+{3x\over5y}\geqslant {13\over5}+2\sqrt{{12y\over5x}\cdot {3x\over5y}}=5, 当且仅当{12y\over5x}={3x\over5y}时取等号,即x^2=4y...
5xy = 3 5y + 1 5x =1,∴4x+3y=(4x+3y)(3 5y + 1 5x )= 4 5 + 9 5 + 12x 5y + 3y 5x ≥ 13 5 +2 12x 5y ?3y 5x = 13 5 + 12 5 = 25 5 =5,当且仅当 12x 5y = 3y 5x ,即y=2x,即5x=5x2,∴x=1,y=2时取等号.故4x+3y的最小值是5,...
(1)3x+4y的最小值为5.(2)xy的最小值为12 25.[解析](1)变形利用基本不等式的性质即可得出.(2)正数x,y满足x+3y=5xy,利用基本不等式的性质即可得出.解:(1)∵正数x,y满足x+3y=5xy,∴1 3 ==5 + X.∴3x+4y-(3x+4y0+3-(13++12)2 (13+21 3x12y )=5 VX∴当x=1时,f(x)取得最小...