结果一 题目 为什么ln(1+x)和x是等价无穷小啊,怎么证明出来的详细说明或给出证明过程啊. 答案 limln(1+x)/x (x趋于0)=lim1/1+x (运用洛必达法则)=1所以 ln(1+x)和x是等价无穷小相关推荐 1为什么ln(1+x)和x是等价无穷小啊,怎么证明出来的详细说明或给出证明过程啊....
综述:x→0,ln(1+x)~x~sinx~tanx~arcsinx~arctanx~(e^x)-1;故ln(1-x)~(-x)~sin(-x)...
x→0时,ln(1+x)/x→1/(1+x)→1, ∴ln(1+x)与x是等价无穷小. 分析总结。 ln1x与x为何能成为等价无穷小结果一 题目 ln(1+x)与x为何能成为等价无穷小?如上,书上的证明看不懂啊 答案 x→0时,ln(1+x)/x→1/(1+x)→1,∴ln(1+x)与x是等价无穷小. 结果二 题目 ln(1+x)与x为何能...
ln(1+x)等价无穷小替换是-(x^2)/2。 把ln(1+x)用麦克劳林公式展开: ln(1+x)=x-(x^2)/2+(x^3)/3-…… 所以ln(1+x)-x=-(x^2)/2+(x^3)/3-…… 所以它的等价无穷小=-(x^2)/2。换底公式 设b=a^m,a=c^n,则b=(c^n)^m=c^(mn) ①...
1 ln(1+x)等价无穷小替换是x→0,ln(1+x)~x~sinx~tanx~arcsinx~arctanx~(e^x)-1;故ln(1-x)~(-x)~sin(-x)~tan(-x)~arcsin(-x)~arctan(-x)~(e^(-x))-1。等价无穷小的使用条件:被代换的量,在去极限的时候极限值为0。被代换的量,作为被乘或者被除的元素时,可以用等价无穷小代换...
x趋于0,ln(1+x)与x是等价无穷小 这是因为:令 g(x) = ln(1+x),g(0) = 0;[ln(1+x)] ' = 1 / (1+x),g'(0) = 1;[ln(1+x)] '' = -1 / (1+x)^2,g''(0) = -1;[ln(1+x)] ''' = 2 /...
1. 要证明ln(1+x)和x是等价无穷小,我们首先考虑极限lim(x→0)ln(1+x)/x。2. 使用洛必达法则(L'Hôpital's Rule)计算这个极限,我们得到lim(x→0)(1/(1+x))。3. 当x趋向于0时,1/(1+x)趋向于1,因此极限的结果是1。4. 根据等价无穷小的定义,如果在同一自变量的趋向...
ln(1+x)等价于x。当f(x)/g(x)=1(x趋向于x0)时称f(x)与g(x)等价无穷小,因为x趋向于0时ln(1+x)/x=1,因此这两个就是一对常用的等价无穷小量。证明过程简单说一下:将1/x放到ln里面,此时ln里面是(1+x)^(1/x),当x趋于0时这个极限为e(两个重要极限之一),因此整体上...
x→0,ln(1+x)~x~sinx~tanx~arcsinx~arctanx~(e^x)-1;故ln(1-x)~(-x)~sin(-x)~tan(-x)~arcsin(-x)~arctan(-x)~(e^(-x))-1。等价无穷小的使用条件:被代换的量,在去极限的时候极限值为0。被代换的量,作为被乘或者被除的元素时,可以用等价无穷小代换,但是作为加减的...
是-x,sin(-x),tan(-x)之类的因为ln(1+x)的等价无穷小是x;sinx;tanx;e^x-1又ln(1-x)=ln[1+(-x)]所以得如上结论结果一 题目 ln(1-x)的等价无穷小现在急要 答案 是-x,sin(-x),tan(-x)之类的因为ln(1+x)的等价无穷小是x;sinx;tanx;e^x-1又ln(1-x)=ln[1+(-x)]所以得如上结论...