等价:矩阵 A 可通过初等变换得到矩阵 B,即存在 P Q 可逆,使得 PAQ = B。 相似:存在矩阵 P 可逆,使得P−1AP=B。 合同:存在矩阵 P 可逆,使得PTAP=B。 前置条件: 等价:是矩阵就行,长宽可以不相等。 相似:方阵。 合同:方阵,通常来说 实对称矩阵(AT=A)。
一、矩阵的等价 1.1等价的定义 1.2等价的性质(充分且必要) 1.3等价的注意点及其延伸 二、矩阵的相似 2.1相似的定义 2.2相似的性质(必要非充分) 2.3相似的注意点及其延伸 三、矩阵的相似对角化(补充) 3.1相似对角化的定义 3.2相似对角化的条件 3.3相似对角化的注意点及其延伸 四、矩阵的合同 4.1合同的定义 4.2合...
由于P^T和P都可逆,因此两个矩阵合同,则它们也必然矩阵等价。 二、区别联系 相似一定等价,合同一定等价,等价不一定相似,等价不一定合同,合同和相似无必然关系(无必然关系,意思就是说一般不能互推)。
(2)对称性:如果B与A合同,那么A也与B合同. (3)传递性:如果B与A合同,C又与B合同,那么C与A合同. (4)合同的两矩阵有相同的二次型标准型. (5)任一个对称矩阵都合同于一个对角矩阵 (6)合同矩阵的秩相等 三、相似的定义 设A,B均为n阶方阵,若存在n阶可逆矩阵P,使P^-1AP=B,则称矩阵A与B为相似矩阵...
等价、相似和合同都是矩阵之间的等价关系。矩阵相似或合同必等价,但反之不一定成立。矩阵等价只需要满足两矩阵之间可以通过一系列可逆变换(也就是若干可逆矩阵相乘)得到。矩阵相似则存在可逆矩阵P使得AP=PB。而矩阵合同则存在可逆矩阵P使得PATAP=B。当上述矩阵P是正交矩阵时,A和B之间既满足相似关系,又满足合同关系。
在线性代数中,矩阵的等价、相似和合同关系是几个重要的概念。以下是对这些关系的总结:✅1. 相似矩阵必定等价,合同矩阵也必定等价; ✅2. 在没有其他前提条件的情况下,相似和合同之间没有必然联系。可以找到相似但不合同的矩阵,也可以找到合同但不相似的矩阵; ✅3. 对于实对称矩阵,相似必定意味着合同; ...
矩阵的合同,等价与相似 矩阵的合同、等价和相似是三种不同的关系。 合同关系是指对于两个矩阵A和B,存在一个可逆矩阵P,使得PAP^{-1} = B。也就是说,两个矩阵可以通过一个可逆矩阵的相似变换,得到一个相同的矩阵。 等价关系是指对于两个矩阵A和B,存在两个可逆矩阵P和Q,使得PABQ = I,其中I为单位矩阵。
百度试题 结果1 题目如何判断矩阵合同、相似、等价?相关知识点: 试题来源: 解析 1.合同即特征值正负0个数分别相同 2.相似,特征值相同且都可以对角化或者说特征值相同且都有n个线性无关特征向量 3.等价,秩相等 合同和相似是特殊的等价关系 反馈 收藏
1、等价,相似和合同三者都是等价关系。2、矩阵相似或合同必等价,反之不一定成立。3、矩阵等价,只需满足两矩阵之间可以通过一系列可逆变换,也即若干可逆矩阵相乘得到。4、矩阵相似,则存在可逆矩阵P使得,AP=PB。5、矩阵合同,则存在可逆矩阵P使得,P^TAP=B。6、当上述矩阵P是正交矩阵时,即PT=P(...
目录 收起 1.等价 2.相似 3.合同 关系:相似老大 ⇒ 合同老二 ⇒ 等价老三 相似一定等价、等价不一定相似 相似一定合同、合同不一定相似 1.等价 符号= P、Q可逆 可以经过有限次初等变换得到r相等 2.相似 符号~^-1 P可逆 行列式、迹、特征值、特征向量、秩都相等 看重根:yE-A和重根个数是不是一...