e的负x的平方积分是根号下π。 解析:I=[∫e^(-x^2)dx]*[∫e^(-y^2)dy] =∫∫e^(-x^2-y^2)dxdy 转化成极坐标 =[∫(0-2π)da][∫(0-+无穷)e^(-p^2)pdp] =2π*[(-1/2)e^(-p^2)|(0-+无穷)] =2π*1/2 =π ∫e^(-x^2)dx=I^(1/2)=根号下π。 积分的性质: 1...
e^(-x^2)的积分: e^(-x^2)的积分: - 从-∞到∞积分结果为√π。 - 从0到∞积分结果为√π/2。
之前已经证明曲面积分结果是曲线积分结果的平方, 所以 \begin{align*}& \int_{-\infty} ^{+\infty}e^{-x^2}\mathrm{d}x=\sqrt\pi\\& \int_{0} ^{+\infty}e^{-x^2}\mathrm{d}x=\frac12\int_{-\infty} ^{+\infty}e^{-x^2}\mathrm{d}x=\frac{\sqrt\pi}2\\& \end{align*} 结...
一、二重积分 首先我们知道积分符号不影响积分的值,故: (∫−∞+∞e−x22dx)2=∫−∞+∞e−x22dx∫−∞+∞e−y22dy 紧接着转为二重积分: ∫−∞+∞dx∫−∞+∞e−12(x2+y2)dy 上式转为极坐标更容易求解: ∫02πdθ∫0+∞re−12r2dr=π∫0+∞e−12r2dr2=2π ...
不定积分的公式:1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + C4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 15、∫ e^x dx = e^x + C6、∫ cosx dx = sinx + C7...
e的负x的平方积分是根号下π。解析:I=【∫e^(-x^2)dx】*【∫e^(-y^2)dy】=∫∫e^(-x^2-y^2)dxdy转化成极坐标=【∫(0-2π)da】【∫(0-+无穷)e^(-p^2)pdp】=2π*【(-1/2)e^(-p^2)|(0-+无穷)】=2π*1/2=π∫e^(-x^2)dx=I^(1/2)=根号...
这个就是泊松积分,并不是泊松积分的一半,其结果等于π^(1/2)/2,建议直接记结果,经常会用到此积分分布是绝对求不出来的,因为它没有初等原函数最好的方法就是利用二重积分构造结果为其平方的二重积分∫∫e^-(x^2+y^2) (d=r^2),再用极坐标作变量代换得结果为π ,剩下就是显然的了。
求e的负x平方定积分步骤 I=[∫e^(-x^2)dx]*[∫e^(-y^2)dy] =∫∫e^(-x^2-y^2)dxdy 转化成极坐标 =[∫(0-2π)da][∫(0-+无穷)e^(-p^2)pdp] =2π*[(-1/2)e^(-p^2)|(0-+无穷)] =2π*1/2 =π ∫e^(-x^2)dx=I^(1/2)=根号下π。©...
e的负x的2次方的积分是什么 简介 具体如下:{(-∞到∞)∫e^(-x²)dx}²= {(-∞到∞)∫e^(-x²)dx}*{(-∞到∞)∫e^(-y²)dy}= (θ,0到2π)(r,0到∞)∫∫re^(-r²)drdθ= {(θ,0到2π)∫dθ}*(r,0到∞)∫2e^(-r²)dr²= 2π所以(-∞到∞)∫e^(-x²...
=\int_{0}^{\frac{\pi}{2}}d\theta\int_{0}^{+\infty}e^{-r^2}dr =\frac{\pi}{4} 立即可以得到 \int_{0}^{+\infty}e^{-x^2}dx=\frac{\sqrt{\pi}}{2} (此结论建议记住) 3月20日更———- 关于这个函数,其中最开始见它是在反常积分那一节,我和们学习过 反常和分的重要函数:...