如a=(X1,X2,X3),则||a||=√X1^2+X2^2+X3^3 些矩阵范数不可以由向量范数来诱导,比如常用的Frobenius范数(也叫Euclid范数,简称F-范数或者E-范数):║A║F= ( ∑∑ aij^2 )^1/2 (A全部元素平方和的平方根)。容易验证F-范数是相容的,但当min{m,n}>1时F-范数不能由向量范数...
||A^-1|| >= 1/||A|| 都是1范数,-1代表A的逆,这个不等式该怎么证明呢?(注:A为可逆矩阵) 扫码下载作业帮搜索答疑一搜即得 答案解析 查看更多优质解析 解答一 举报 只要是相容范数,都有1 解析看不懂?免费查看同类题视频解析查看解答 相似问题 ...