【题目】利用矩阵的初等变换,求该方阵的逆矩阵。321315323 相关知识点: 试题来源: 解析 【解析】【知识点】 若矩阵A的特征值为入1,入2,…,入n,那么|A =入1·入2·..入n 【解答】 A|=1×2×…×n=n! 设A的特征值为入,对于的特征向量为。 则Aa=入a 那么(A2-A)a=A2a-Aa=入2a-入a= (入2-...
百度试题 题目利用矩阵的初等变换求矩阵的逆矩阵. 相关知识点: 试题来源: 解析 D、反馈 收藏
解(1)对矩阵(A:E)施以初等行变换; (A:E =( \matrix {2&5&1&0 \cr 1&3&1&0 \cr 1&3&1&0}) \rightarrow ( \matrix {1&3&1&0&1 \cr 2&5&1&0}) \rightarrow ( \matrix {1&3&1&0& \dfrac {r_{1}+3r_{2}}{ \rightarrow } \Bigg l( \matrix {1&0&3&-5 \...
用初等行变化求矩阵的逆矩阵的时候,即用行变换把矩阵(A,E)化成(E,B)的形式,那么B就等于A的逆在这里(A,E)=1 2 -3 1 0 03 2 -4 0 1 02 -1 0 0 0 1 第2行减去第1行×3,第3行减去第1行×21 2 -3 1 0 00 -4 5 -3 1 00 -5 6 -2 0 1 第2行减去第3行1 2 -3 1 0 ...
用矩阵的初等变换求逆矩阵 一、 问题提出 在前面我们以学习了用公式求逆矩阵,但当矩阵A的阶数较大时,求A*很繁琐,此方法不实用,因此必须找一种更简单的方法求逆矩阵,那么如何找到一种简单的方法呢?(饿了再吃) 二、求逆矩阵方法的推导(“润物细无声”“化抽象为自然”) 我们已学习了矩阵初等变换的性质,如...
此时对E也进行同样的初等行 变换,所以即对AE左乘以矩阵P,所以PAE等于PAP等于EP,P就是A的逆矩阵。
而初等矩阵的逆矩阵其实就是该初等矩阵对应初等变换的一次逆变换。也就是说对矩阵A左(右)乘一个初等矩阵C后再左(右)乘,最后得到的矩阵还是A。逆矩阵: 设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。
【知识点】若矩阵A的特征值为λ1,λ2,...,λn,那么|A|=λ1·λ2·...·λn 【解答】|A|=1×2×...×n= n!设A的特征值为λ,对于的特征向量为α。则 Aα = λα 那么 (A²-A)α = A²α - Aα = λ²α - λα = (λ²-λ)α 所以A&#...
求元索为具体数字的矩阵的逆矩阵,常用初等变换法‘如果A可逆,则A’可通过初等变换,化为单位矩阵 I ,即存在初等矩阵使 可以看到当A通过初等变换化为单位处阵的同时,对单位矩阵I作同样的初等变换,就化为A的逆矩阵 这就是求逆矩阵的初等行变换法,是实际应用中比较简单的一种方法。需要注意的是,...
1、初等变换法 求元索为具体数字的矩阵的逆矩阵,常用初等变换法‘如果A可逆,则A’可通过初等变换,化为单位矩阵 I 用A的逆右乘上式两端,得:可以看到当A通过初等变换化为单位处阵的同时,对单位矩阵I作同样的初等变换,就化为A的逆矩阵。2、伴随矩阵法:此方法求逆知阵,对于小型矩阵,特别是...