本题详细计算步骤如下图:
根据题意,设y为导数 y=√(1+x^2)y'={1/[2√(1+x^2)] } d/dx ( 1+x^2)={1/[2√(1+x^2)] } (2x)=x/√(1+x^2)即原式导数为:x/√(1+x^2)导数性质:一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点...
计算如下:y'=[(1/2)*1/√(1-x^2)]*(1-x^2)' =-x/√(1-x^2)一个函数y关于x的定义需要明确x的取值范围,使得每个x值对应唯一的一个y值,才能称为y是x的函数。这个定义范围通常由函数本身的性质决定。在求导过程中,我们不仅需要关注函数自身的性质,还要考虑函数定义域的限制。例如,...
√(1+x)的导数为1/(2*√(1+x))。解:令f(x)=√(1+x),那么f'(x)=(√(1+x))'=((1+x)^(1/2))'=1/2*(1+x)^(-1/2)=1/(2*√(1+x))即√(1+x)的导数为1/(2*√(1+x))。
根据题意可以设y'为导数结果:y=√(1+x^2)y'={1/[2√(1+x^2)] } d/dx ( 1-x^2)={1/[2√(1-x^2)] } (-2x)=-x/√(1-x^2)即原式导数为:-x/√(1-x^2)
根号下1-x^2的原函数为:1/2(arcsinx+x√(1-x^2))。令x=sint,-π/2≤t≤π/2∫√(1-x^2)=∫costd(sint)=∫cos^2tdt=1/2∫(1+cos2t)dt=1/2(t+1/2sin2t)+C=1/2(arcsinx+x√(1-x^2))+C对1/2(arcsinx+x√(1-x^2))求导就得到根号1-x^2。已知函数f(x)...
根号下(1+X^2)求导过程相关知识点: 试题来源: 解析 [√(1+X^2)]'=1/[2√(1+X^2)]*(1+X^2)'=x/√(1+X^2)结果一 题目 根号下(1+X^2)求导过程 答案 [√(1+X^2)]' =1/[2√(1+X^2)]*(1+X^2)' =x/√(1+X^2) 相关...
根据题意可以设y'为导数结果:y=√(1+x^2)y'={1/[2√(1+x^2)] } d/dx ( 1-x^2)={1/[2√(1-x^2)] } (-2x)=-x/√(1-x^2)即原式导数为:-x/√(1-x^2)
复合函数求导 原则链式法则 令y=√(1-2x) 令t=1-2x 也y=√t dy/dx=dy/dt*dt/dx dy/dt=1/...
y=√(1+x^2)y=(1+x^2)^(1/2)y'=(1/2)*(1+x^2)^[(1/2)-1]*(1+x^2)'=(1/2)*(1+x^2)^(-1/2)*2x =x*(1+x^2)^(-1/2)=x/√(1+x^2)。