当我们将通用大模型微调为专用大模型时,这个过程需要对特定领域的大量数据进行深入学习。这些数据通常包含大量高维度的特征向量,例如在自然语言处理中的词向量、在图像识别中的像素向量等。这些高维度向量数据的处理,传统的数据库无法满足其性能需求,而向量数据库却能有效地管理这些数据,支持对这些数据的高效检索和查...
解决大模型问题的方法有很多,除了外挂向量数据库,还存在大模型微调、使用RAG技术等做法。大模型微调方式好比供一个孩子从小学念到大学甚至研究生;向量数据库就像开卷考试,大模型完全不需要学习理解,只要能写出答案就行;RAG则是更往下落地的场景,需要结合向量数据库才能发挥作用。其中差别,高下立见,比起大模型微...
在人工智能领域,通用大模型的微调成为了一种常见且有效的策略。这种策略允许模型学习一种更具体、更详细的领域知识,从而能更好地解决领域内的问题。然而,这个微调过程的成功在很大程度上依赖于向量数据库的功能和性能。 当我们将通用大模型微调为专用大模型时,这个过程需要对特定领域的大量数据进行深入学习。这些数据通...
一方面,企业很难把自己具有核心竞争力的数据放到大模型中去训练;有行业人士就曾向 AI 科技评论指出,许多应用型公司并不愿意将自身微调的模型贡献到公有版本里、与其他人分享,而是倾向于训练自己的大模型,而后进行本地私有化部署。这个过程中,企业要解决的主要难点是,如何将私有化业务数据跟大模型结合。销售易是...
向量数据库(Vector database)在我们与行业人士的各种交流中屡被提及。它被看做 AI Infra 中的关键一环,这种专门用于存储、索引和查询嵌入向量的数据库系统,可以让大模型更高效率的存储和读取知识库,并且以更低的成本进行 finetune(模型微调),还将进一步在 AI Native 应用的演进中扮演重要作用。向量数据库之...
很多人认为大模型通过持续的训练学习,就可以解决幻觉问题。然而现实情况是大模型在知识修正这一问题上仍步履维艰。如下图,是大模型在微调下依然难以修正幻觉的一个简单的图例: 从这个图我们可以看出,虽然通过在某些“易错”语料上进行持续训练,可以有效的改进模型的预测分布(经过训练后的模型,在预测Paris这个token的时...
其中差别,高下立见,比起大模型微调、RAG,向量数据库显然速度更快,成本也更低。 更进一步来看,基于大模型底层能力去打造AI原生应用和构建AI Agent,同样离不开向量数据库。 正如销售易所言:“有了向量数据库,就等于先把企业的数据库、支持文档存在向量数据库里做优先预处理,解锁完成后再和大模型结合回答用户的问题...
这种专门用于存储、索引和查询嵌入向量的数据库系统,可以让大模型更高效率的存储和读取知识库,并且以更低的成本进行 finetune(模型微调),还将进一步在 AI Native 应用的演进中扮演重要作用。 目前,大语言模型(LLM)往往包含数十亿个参数,嵌入则广泛作用于这些模型的训练和微调过程,使其获得执行各种 NLP 任务的能力。
向量数据库(Vector database)在我们与行业人士的各种交流中屡被提及。它被看做 AI Infra 中的关键一环,这种专门用于存储、索引和查询嵌入向量的数据库系统,可以让大模型更高效率的存储和读取知识库,并且以更低的成本进行 finetune(模型微调),还将进一步在 AI Native 应用的演进中扮演重要作用。