可导与连续的关系:可导必连续,连续不一定可导; 可微与连续的关系:可微与可导是一样的; 可积与连续的关系:可积不一定连续,连续必定可积; 可导与可积的关系:可导一般可积,可积推不出一定可导; 可微在一元函数中与可导等价,在多元函数中,各变量在此点的偏导数存在为其必要条件,其充要条件还要加上在此函数所表...
可导必连续,连续不一定可导,即可导是连续的充分条件,连续是可导的必要条件一元函数中可导与可微等价,多元函数中可微必可导,可导不一定可微,即可微是可导的充分条件,可导是可微的必要条件所以按条件强度可微≥可导≥连续可积与可导可微连续无必然关系 分析总结。 可微在一元函数中与可导等价在多元函数中各变量在此点的...
这是因为可导意味着函数在该点处的极限存在且左导数等于右导数,这正是连续性的定义之一。 然而,逆命题并不成立,即连续不一定可导。也就是说,一个函数在某点连续并不意味着它在该点可导。例如,函数f(x) = |x|在x=0处连续但不可导。 2.可微与可导: 对于一元函数,可微和可导是等价的概念,通常可以互换使用...
解答一 举报 可微和可导能互相推出…但二者是不同的两个概念…可导就连续但连续却不一定可导,例如:Y=|X|在X=0出连续但不可导 解析看不懂?免费查看同类题视频解析查看解答 相似问题 求可微 可导 连续他们和偏导的关系 可导可微可连续这三者之间的关系是什么,为什么? 极限的存在.连续.可导.可微之间的关系 特别...
可导和可微是等价的,可导则在该点连续,而连续不一定可导.如:y=|x|,在x=0处连续,但不可导. 分析总结。 可导和可微是等价的可导则在该点连续而连续不一定可导结果一 题目 可导可微可连续这三者之间的关系是什么,为什么? 答案 可导和可微是等价的,可导则在该点连续,而连续不一定可导.如:y=|x|,在x=0处连...
一元函数与多元函数连续,可导,可微之间的关系:1、一元函数涉及的是两维曲线,多元函数涉及到的是至少是三维的曲面。 一元函数的可导可微只要从左右两侧考虑; 多元函数的可导可微,必须从各个角度,各个方向,各个侧面,进行前后、 左右、上下、侧斜等等方向的左右两侧考虑。 2、一元函数,只要曲线光滑--没有尖点、没有断点...
可微和可导是等价关系,两者讲的是一回事.只是在算式中的形式不同而已. 连续是可导(可微)的必要条件,连续不一定可导(可微). 可导(可微)是连续的充分条件,可导(可微)必然连续. 分析总结。 连续是可导可微的必要条件连续不一定可导可微结果一 题目 高数题:可导、可微和连续之间的联系和区别?在多元函数中 答案 可微...
可微的条件: 必要条件:若函数在某点可微,则该函数在该点对x和y的偏导数必存在; 充分条件:偏导数存在且连续 可微的判别:函数连续、可导与可微之间的关系反例列举: 一元函数 连续不能推可微: f(x)=|x|在(0,0)处 连续不能推可导: 在处f(x)=|x|在(0,0)处...
函数可微与可导之间的关系:函数可微一定可导,这是由于全微分可以表示为偏导数的线性组合。但是函数可导不一定可微,这是由于二元函数方向性的存在,导致偏导数存在但全增量不能表示为偏导数的线性组合。 函数偏导数连续与可微之间的关系:函数某点的偏导数连续,则必然可微,这是由于全增量可以用泰勒公式展开,并利用偏导数的...