用初等行变化求矩阵的逆矩阵的时候,即用行变换把矩阵(A,E)化成(E,B)的形式,那么B就等于A的逆在这里(A,E)=1 2 -3 1 0 03 2 -4 0 1 02 -1 0 0 0 1 第2行减去第1行×3,第3行减去第1行×21 2 -3 1 0 00 -4 5 -3 1 00 -5 6 -2 0 1 第2行减去第3行1 2 -3 1 0 ...
矩阵A施行一次s类初等行(列)变换,相当于A左(右)乘第s类初等矩阵。到这,我们发现初等矩阵可理解为一次初等变换操作,而初等矩阵的逆矩阵其实就是该初等矩阵对应初等变换的一次逆变换。也就是说对矩阵A左(右)乘一个初等矩阵C后再左(右)乘,最后得到的矩阵还是A。逆矩阵: 设A是数域上的一个n阶方阵,若在...
右边就是原矩阵的逆矩阵。初等变换的规则:先把左上角元素变成1,把第一列元素除去第一个都变成零,...
逆矩阵,是这一行(或列)乘以这个倍数的相反数,加到另外那一行(或列)的初等矩阵。初等矩阵的逆矩阵其实是一个同类型的初等矩阵(可看作逆变换)。例如,交换矩阵中某两行(列)的位置;用一个非零常数k乘以矩阵的某一行(列);将矩阵的某一行(列)乘以常数k后加到另一行(列)上去。
初等行变换在矩阵理论中有着广泛的应用,如解线性方程组、求矩阵的秩、判断矩阵是否可逆等。初等列变换及其应用 定义 初等列变换是指对矩阵进行某些列操作,如交换两列、将某一列乘以非零常数或加到另一列等,使得矩阵变为另一种形式。应用 初等列变换在矩阵理论中也有着广泛的应用,如求矩阵的逆、求行列式等。
第一个公式是关于初等行变换的逆矩阵,即将一个矩阵A通过一 次初等行变换得到矩阵B,那么矩阵B的逆矩阵乘以A就等于单位矩阵。具体来说,如果B是通过将A中的第i行与第j行交换得到的,其中i 不等于j,那么B的逆矩阵乘以A等于单位矩阵,即B^-1 * A = I。这个公式告诉我们,通过交换两行可以消去一个初等行...
第三节逆矩阵与矩阵的初等变换 一、概念的引入 在数的运算中,当数a0时,有 aaaa1,其中a11为a的倒数,(或称a的逆);a在矩阵的运算中,单位阵E相当于数的乘法运算中的1,那么,对于矩阵A,如果存在一个矩阵A1,使得 1 1 AA1A1AE,1A则矩阵称为A...
公式:R(A)=R(A∧T)A(α+β)=(αβT+βαT)(α+β)=αβTα+βαTα+αβTβ+βαTβ =(1/2)α+(1/2)β+(αTα)β+(βTβ)α 由已知 βTα 是非零矩阵, 所以 r(βTα)>=1。
A^2-A-2E=0推出A^2-A=2E,所以A(A-E)=2E,从而A的逆矩阵为1/2(A-E).A^2-A-2E=0推出A^2-A-6E=-4E,所以(A+2E)(A-3E)=-4E,从而A+2E的逆矩阵为-1/4(A-3E).可以如图改写已知的等式凑出逆矩阵。
用初等行变化求矩阵的逆矩阵的时候,即用行变换把矩阵(A,E)化成(E,B)的形式,那么B就等于A的逆在这里(A,E)=1 2 -3 1 0 03 2 -4 0 1 02 -1 0 0 0 1 第2行减去第1行×3,第3行减去第1行×21 2 -3 1 0 00 -4 5 -3 1 00 -5 6 -2 0 1 第2行减去第3行1 2 -3 1 0 ...