a的秩等于n-1 a不满秩 a的行列式等于零 所以 伴随矩阵也等于零 这个说法为什么不对?a的秩等于n-1 a不满秩 a的行列式等于零 所以 伴随矩阵也等于零 这个说法为
伴随矩阵的秩的问题 若A矩阵的秩为n-1,那么行列式A的值不是0么,可是伴随矩阵不是应该=|A|A-1么不应该是0么.为什么它的秩是1,我只想知道上述推导为何不正确.
综上所述,当A的秩为n-1时,其伴随矩阵A*的秩为1,这是因为伴随矩阵A*中至少包含一个非零元素,而AA*的性质则进一步确认了A*的秩只能是1。因此,我们可以得出结论,当A的秩为n-1时,伴随矩阵A*的秩必定为1。这一结论对矩阵理论和线性代数的应用有着重要意义,它不仅揭示了矩阵秩与伴随矩阵...
当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。二... 线性代数: 矩阵A的秩为n-1,证明伴随矩阵的秩为1.(要有过程) 由于公式r(AB)<=r(A),r(AB)<=r(B),并且r(AA*)=r(I)=n,则,伴随的秩为n;2、当r(A)=n-1时... 当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。二... ”兔子不出窝...
我们能够得知矩阵A中必存在一个非零的n-1阶子式,从而在A*中也必有一个元素不等于0。综上所述,通过矩阵AA*的性质与矩阵A的秩之间的关系,我们可以推导出伴随矩阵A*的秩为1,进一步揭示了矩阵秩与伴随矩阵秩之间的内在联系,为理解线性代数中的矩阵运算提供了理论基础。
部分内容由用户自主上传,未做人工编辑处理,也不承担相关法律责任,如果您发现有涉嫌版权的内容,欢迎提供...
所以A*的列向量是AX=0的解,由A的秩为n-1,所以A*的秩≤解空间的秩=1(证≤也可以由Frobenius...
如果A的秩小于n-1,那么A的所有n-1阶子阵都奇异,按伴随阵的定义直接得到adj(A)=0结果一 题目 伴随矩阵不为0说明n阶矩阵A的秩至少是n-1 为什么 答案 这不是很显然的吗如果A的秩小于n-1,那么A的所有n-1阶子阵都奇异,按伴随阵的定义直接得到adj(A)=0相关推荐 1伴随矩阵不为0说明n阶矩阵A的秩至少是...
阶梯式最后一行全为 0, 0 行 的代数余子式 不是 0, 故伴随矩阵不为 0 矩阵。
伴随矩阵不为0说明n阶矩阵A的秩至少是n-1 为什么 这不是很显然的吗 如果A的秩小于n-1,那么A的所有n-1阶子阵都奇异,按伴随阵的定义直接得到adj(A)=0