矩阵A与B相似,则B=(P^-1)AP,可逆矩阵是初等阵的乘积,所以A可以经过初等变换化为B,而初等变换不改变矩阵的秩,所以r(B)=r(A)。("P^(-1)"表示P的-1次幂,也就是P的逆矩阵)矩阵A与B相似,必须同时具备两个条件:(1)矩阵A与B不仅为同型矩阵,而且是方阵。(2)存在n阶可逆矩阵P,使...
矩阵AB=BA可以推出B是A的逆矩阵。1、相似的定义为对n阶方阵A、B,若存在可逆矩阵P,使得P^-1AP=B,则称A、B相似,从定义出发,最简单的充要条件即是对于给定的A、B,能够找到这样的一个P,进一步地,如果A、B均可相似对角化,则他们相似的充要条件为A、B具有相同的特征值。2、逆矩阵是一个数学概念,...
矩阵a+b等于b+a。矩阵的加法满足交换律,即对于任意两个矩阵a和b,a+b等于b+a。这是因为矩阵的加法是按照对应元素相加的规则进行的,而加法的交换律是数学上的基本性质。无论是矩阵的维度还是元素的取值,只要两个矩阵的相应位置的元素可以相加,它们的和就是相同的,无论加法的顺序如何。
有人说“当矩阵A, B满足A+B=B+A就可以得到AB=BA”,是错误的。
所以A和B矩阵相等,那么他们的行列式也相等。2,数值相等的行列式可以有很多个,对应的矩阵也可以不相同。所以,A,B矩阵不相等(同),行列式不一定相同。A=2 5 B=3 6 |A|=14-15=-1 B=3-12=-9 A ≠B →|A|≠|B| 3 7 2 1 A=2 3 B=3 2 ...
所以合同 两个合同的矩阵其实是同一个双线性函数在不同基下的度量矩阵。例如:则称方阵A与B合同,而A与B在实数域上合同等价于 A与B有相同的正、负惯性指数(即正、负特征值的个数相等)现在A是正定矩阵,那么特征值都是正的 当然B的特征值也都是正的,所以B也正定 ...
当矩阵A,B,AB都是N阶对称矩阵时,A,B可交换,即AB=BA证明:A,B,AB都是对称矩阵,即AT=A,BT=B,(AB)T=AB 于是有AB=(AB)T=(BT)(AT)=BA当A,B可交换时,满足(A+B)²=A²+B²+2AB 证明:A,B可交换,即AB=BA(A+B)²=A²+AB+BA+B²=A²+AB+AB+B²=A²+B²+2AB 解析...
等于。1、因为AB=BA=E(单位阵),B是A的逆矩阵。所以|AB|=|BA|=1.当A是方阵时,|AB|=|A||B|,|BA|=|B||A|,有|B|=1/|A|。 2、设AB均为n阶方阵,则A与B的乘积矩阵的行列式等于A的行列式与B的行列式的乘积正确,但ab为n阶矩阵a+b的行列式等于a的行列式加上b的行列式,这个是不成立的。
证:|AB|=|BA| 根据定义可得|AB|=|A| |B|(这是方阵行列式最基础的定义,基本不用求,要求自己用两个二阶矩阵来求)根据行列式定义,两个行列相乘位置互换是相等的(因为行列式可以等于一个值)所以,|AB|=|A| |B|=|B||A| 又因为|BA|=|B| |A| 所以|AB|=|A| |B|=|B||A|=|BA...
等价标准型,如果矩阵B可以由A经过一系列初等变换得到 那么矩阵A与B是等价的。矩阵A与矩阵B等价的充要条件是r(A)=r(B)。经过多次变换以后,得到一种最简单的矩阵,就是这个矩阵的左上角是一个单位矩阵,其余元素都是0,那么这个矩阵就是原来矩阵的等价标准型。