矩阵AB=BA可以推出B是A的逆矩阵。1、相似的定义为对n阶方阵A、B,若存在可逆矩阵P,使得P^-1AP=B,则称A、B相似,从定义出发,最简单的充要条件即是对于给定的A、B,能够找到这样的一个P,进一步地,如果A、B均可相似对角化,则他们相似的充要条件为A、B具有相同的特征值。2、逆矩阵是一个数学概念,...
1、矩阵a和b相似则特征多项式相同,特征值相同,行列式相等,迹相等,秩相等。p^(-1)AP=B, 则称A相似B;合同, XT AX=B,则称A,B合同。单位矩阵的特征值皆为1,任何向量都是单位矩阵的特征向量。因为特征值之积等于行列式,所以单位矩阵的行列式为1。因为特征值之和等于迹数,单位矩阵的迹为n。2、相似的...
答案 1,2个相等的矩阵,不仅行数和列数都相等,而且各个位置上的元素也一一对应相等.一个矩阵的行列式对应的是一个唯一的数值.所以A和B矩阵相等,那么他们的行列式也相等.2,数值相等的行列式可以有很多个,对应的矩阵也可以不...相关推荐 11、矩阵A等于矩阵B, A的行列式等于B的行列式吗? 2、矩阵A不等于矩阵B, A...
等于。1、因为AB=BA=E(单位阵),B是A的逆矩阵。所以|AB|=|BA|=1.当A是方阵时,|AB|=|A||B|,|BA|=|B||A|,有|B|=1/|A|。 2、设AB均为n阶方阵,则A与B的乘积矩阵的行列式等于A的行列式与B的行列式的乘积正确,但ab为n阶矩阵a+b的行列式等于a的行列式加上b的行列式,这个是不成立的。
AB的转置等于B的转置乘以A的转置,这是因为A矩阵的每行点乘B矩阵的每列然后组成新的矩阵,行数是A矩阵的行数,列数是B矩阵的列数。那么B转置的每行就是B的每列,A转置的每列就是A的每行,向量点积又是可交换的,再加上列数行数互换,自然就是AB的转置了。转置的介绍 转置是一个数学名词。直观来看,将A...
假设A,B 都是n 阶矩阵。 引理(1)|A0CB|=|A||B| (2)|AC0B|=|A||B| (3)|(E0XE)(ABCD)|=|(ABCD)| (利用了行列式的性质,把某行的某倍加到另外一行,行列式不变) (4)|(EX0E)(ABCD)|=|(ABCD)| 利用此性质,我们再利用下面的 (E0−EE)(EE0E)(E−A0E)(A0EB)=(EB−AB0AB...
||A+B|| 在一些教科书上定义的矩阵范数是对于 阶矩阵的,这种定义往往要求矩阵满足相容性,即 5.||AB|| 在本文中,对于矩阵范数的定义仅要求前4条性质,而满足第5个性质的矩阵范数称为服从乘法范数(sub- multiplicative norm)一般来讲矩阵范数除了正定性,齐次性和三角不等式之外,还规定其必须满足相容性:...
等价标准型,如果矩阵B可以由A经过一系列初等变换得到 那么矩阵A与B是等价的。矩阵A与矩阵B等价的充要条件是r(A)=r(B)。经过多次变换以后,得到一种最简单的矩阵,就是这个矩阵的左上角是一个单位矩阵,其余元素都是0,那么这个矩阵就是原来矩阵的等价标准型。
3.3)”有如下一段叙述:有人说“当矩阵A, B满足A+B=B+A就可以得到AB=BA”,是错误的。