0<cosA<1,0<cosB<1,所以0<cosAcosB<1,则-1<-cosAcosB<0,则cosAcosBcosC>-cosBcosA>-1,当△ABC为等腰三角形,且C无限接近于π时,cosAcosBcosC无限接近于-1.即cosAcosBcosC的下确界为-1. 要使cosAcosBcosC最小,则△ABC为钝角三角形,不妨假设C为钝角,可得cosAcosBcosC>-cosBcosA,利用余弦值的范围可得...
【题目】在锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,已知 2bsinA-√3a=0(1)求角B的大小.(2)求 cosA+cosB+cosC 的取值范围.
1在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2 b sin A=√3 a.(I)求角B;(II)求cosA+cosB+cosC的取值范围. 2在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2bsinA=√3 a.〔I〕求角B;〔II〕求cosA+cosB+cosC的取值范围. 3在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2bsinA=√...
事实上,有cosA+cosB+cosC=1+rR,而R≥2r>0,故1<cosA+cosB+cosC≤32...
C=2 而√[(cos²A+cos²B+cos²C)/3]≥3次根号下(|cosAcosBcosC|)∴|cosAcosBcosC|≤[√(cos²A+cos²B+cos²C)/3]³=[√(2/3)]³=2√6/9 ∴-2√6/9≤cosAcosBcosC≤2√6/9 即cosAcosBcosC的取值范围为[-2√6/9,2√6/9]
由△ABC是锐角三角形得A∈ A∈(π/(6),π/(2)) cosC=ccos((2π)/3-A)=-1/2cos4+(√3)/2sin4 得 cosA+cosB+cosC=(√3)/2sinA+1/2cosA+1/2 =sin(A+π/6)+1/2∈((√3+1)/2,3/2] 故 cosA+cosB+cosC 的取值范围 是 ((√3+1)/2,3/2] ...
(1)的结论有:cosA+cosB+cosC=cosA+1/2+cos((2π)/3-A) =cosA-1/2cosA+(√3)/2sinA+1/2=(√3)/2sinA+1/2cosA+1/2 =sin(A+π/6)+1/2 由C0(2π)/3-Aπ/(2) 0Aπ/(2) π/(6)Aπ/(2) ,A+sin(A+π/3)∈((√3)/2,1] ()小(于是sin即 cosA+cosB+cosC 的取值范围是...
(√3)/2sinA+1/2=sin(A+π/(6)) , +1/2 △ABC为锐角三角形, 0Aπ/(2) , 0Cπ/(2) , 解得 π/(6)Aπ/(2) , ∴π/3A+π/6(2π)/3 , ∴(√3)/2sin(A+π/(6)≤1 ,∴(√3)/2+1/2sin(A+π/6)+1/2≤3/2 ∴cosA+cosB+cosC 的取值范围为 ((√3+1)/2,3/2]...
cosA+cosB+cosC =2cos[(A+B)/2]*cos[(A-B)/2]-cos(A+B)=2cos[(A+B)/2]*cos[(A-B)/2]-2{cos[(A+B)/2]}^2+1 =2cos[(A+B)/2]*{cos[(A-B)/2]-cos[(A+B)/2]}+1 ≤2sin(C/2)[1-sin(C/2)]+1 =-2[sin(C/2)]^2-sin(C/2)+1/4-1/4]+1 =-...
设y=cosAcosBcosC,则2y=[cos(A+B)+ cos(A-B)] cosC,∴cos2C- cos(A-B)cosC+2y=0,构造一元二次方程x2- cos(A-B)x+2y=0,则cosC是一元二次方程的根,由cosC是实数知:△= cos2(A-B)-8y≥0,即8y≤cos2(A-B)≤1,∴ ,故最大值1/8 ...