2√1 是不是指它是怎么写的?
如图
你好!可以如图用凑微分法求出不定积分。经济数学团队帮你解答,请及时采纳。谢谢!
要求解根号1+x^2的积分,可以使用换元法进行求解。具体步骤如下:1、令x=tanθ,那么有dx=sec^2θdθ,同时有1+tan^2θ=sec^2θ。2、将根号1+x^2中的x用tanθ表示,得到根号1+tan^2θ。3、将根号1+tan^2θ中的1+tan^2θ用sec^2θ表示,得到secθ。4、将原积分中的根号1+x^2用...
根号1+x2分之一的积分为(x/2)√(x^2 +1)+(1/2)ln[x+√(x^2 +1)+C。具体步骤如下:∫ √(x^2 +1)dx=x√(x^2 +1)-∫ x^2dx/√(x^2 +1)=x√(x^2 +1)-∫ (x^2+1-1)dx/√(x^2 +1)=x√(x^2 +1)-∫ √(x^2+1)dx+∫ dx/√(x^2 +1)=x√(x^...
根号下1+x^2的积分是I=1/2*[x√(1+x²)+ln(x+√(1+x²))]+C。令I=∫√(1+x²)dx。=x√(1+x²)-∫x²/√(1+x²)dx。=x√(1+x²)-∫(x²+1-1)/√(1+x²)dx。=x√(1+x²)-∫√(1+x²)dx+∫1/√(1+x²)dx。=x√(1+x²)-I+ln(x+√(1...
根号1+x^2的不定积分是(1/2)[arcsinx + x√(1 - x)] + C。x = sinθ,dx = cosθ dθ。∫ √(1 - x²) dx = ∫ √(1 - sin²θ)(cosθ dθ) = ∫ cos²θ dθ。= ∫ (1 + cos2θ)/2 dθ = θ/2 + (sin2θ)/4 + C。= (arcsinx)/2...
根号下1-x^2的积分为1/2*arcsinx+1/2*x*√(1-x^2)+C。解:∫√(1-x^2)dx 令x=sint,那么 ∫√(1-x^2)dx=∫√(1-(sint)^2)dsint =∫cost*costdt =1/2*∫(1+cos2t)dt =1/2*∫1dt+1/2*∫cos2tdt =t/2+1/4*sin2t+C 又sint=x,那么t=arcsinx,sin2t=2sint...
本质上是一个不定积分公式的推导。详情如图所示:其中……的解题过程如下图 供参考,请笑纳。也可以直接利用三角代换求此不定积分。
根号1+x^2的不定积分是(1/2)[arcsinx + x√(1 - x)] + C。x = sinθ,dx = cosθ dθ。∫ √(1 - x²) dx = ∫ √(1 - sin²θ)(cosθ dθ) = ∫ cos²θ dθ。= ∫ (1 + cos2θ)/2 dθ = θ/2 + (sin2θ)/4 + C。= (arcsinx)/2...