2√1 是不是指它是怎么写的?
根号下1-x^2的积分为1/2*arcsinx+1/2*x*√(1-x^2)+C。解:∫√(1-x^2)dx 令x=sint,那么 ∫√(1-x^2)dx=∫√(1-(sint)^2)dsint =∫cost*costdt =1/2*∫(1+cos2t)dt =1/2*∫1dt+1/2*∫cos2tdt =t/2+1/4*sin2t+C 又sint=x,那么t=arcsinx,sin2t=2sint...
根号1+x2分之一的积分为(x/2)√(x^2 +1)+(1/2)ln[x+√(x^2 +1)+C。具体步骤如下:∫ √(x^2 +1)dx=x√(x^2 +1)-∫ x^2dx/√(x^2 +1)=x√(x^2 +1)-∫ (x^2+1-1)dx/√(x^2 +1)=x√(x^2 +1)-∫ √(x^2+1)dx+∫ dx/√(x^2 +1)=x√(x^...
方法如下,请作参考:
根号1+x^2的不定积分是(1/2)[arcsinx + x√(1 - x)] + C。x = sinθ,dx = cosθ dθ。∫ √(1 - x²) dx = ∫ √(1 - sin²θ)(cosθ dθ) = ∫ cos²θ dθ。= ∫ (1 + cos2θ)/2 dθ = θ/2 + (sin2θ)/4 + C。= (arcsinx)/2...
根号下1-x^2的积分为1/2*arcsinx+1/2*x*√(1-x^2)+C。解:∫√(1-x^2)dx 令x=sint,那么 ∫√(1-x^2)dx=∫√(1-(sint)^2)dsint =∫cost*costdt =1/2*∫(1+cos2t)dt =1/2*∫1dt+1/2*∫cos2tdt =t/2+1/4*sin2t+C 又sint=x,那么t=arcsinx,sin2t=2sint...
积分如下图:
根号下1+x^2的积分是I=1/2*[x√(1+x²)+ln(x+√(1+x²))]+C。令I=∫√(1+x²)dx。=x√(1+x²)-∫x²/√(1+x²)dx。=x√(1+x²)-∫(x²+1-1)/√(1+x²)dx。=x√(1+x²)-∫√(1+x²)dx+∫1/...
结果是 (1/2)[arcsinx + x√(1 - x²)] + C x = sinθ。以下是微积分的相关介绍:微积分(Calculus),数学概念,是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。微分学...
所以∫sec³udu=1/2(secutanu+ln|secu+tanu|)+C 从而∫√(1+x²)dx=1/2(x√(1+x²)+ln(x+√(1+x²)))+C。相关如今下 相关内容解释:换元积分法(Integration By Substitution)是求积分的一种方法,主要通过引进中间变量作变量替换使原式简易,从而来求较复杂的不...