等边三角形的外接圆半径和内切圆半径的关系是什么?相关知识点: 圆 圆的综合 与圆有关的位置关系 点与圆的位置关系 求三角形外接圆的半径 圆的切线 三角形内切圆 求三角形内切圆半径 试题来源: 解析 答案:等边三角形的外接圆半径是内切圆半径的两倍。
三角形的外接圆半径和内切圆半径的关系可以通过欧拉公式得出。 欧拉公式是指在一个三角形中,三角形的外接圆半径R、内切圆半径r和三角形面积S之间有以下关系: R = (abc) / (4S) r = S / p 其中,a、b、c分别是三角形的三边长度,p是三角形的半周长,即p = (a + b + c) / 2 因此,外接圆半径R和...
分析:正三角形的内心和外心重合,根据等腰三角形的三线合一,则正三角形的外接圆半径和内切圆的半径可以放在30°的直角三角形中,根据30°所对的直角边是斜边的一半,得R=2r. 解答:解:正三角形内切圆半径r与外接圆半径R之间的关系为R=2r. 故选D.
1、三角形内切圆半径:r=2s/(a+b+c)。式中s是三角形的面积,(a+b+c)是三角形的周长。2、三角形外接圆的半径:R=abc/4s公式中a,b,c分别为三角形的三边,S为面积。3、与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角...
正三角形的内切圆半径r与外接圆半径R之间的关系为 [ ] A. 4R=5r B. 3R=4r C. 2R=3r D. R=2r 试题答案 在线课程 答案:D 练习册系列答案 西城学科专项测试系列答案 小考必做系列答案 小考实战系列答案 小考复习精要系列答案 小考总动员系列答案 ...
(2)三角形外接圆半径 已知∆ABC的三边长分别为a、b、c,面积为S,外接圆半径为R。已知一边和它的对角,那么用已知边和角来表示它的外接圆的半径R的公式是: 四、三角形内切圆、外接圆半径的关系 已知∆ABC的三边长分别为a、b、c,面积为S,内切圆半径r,外...
1如果正三角形的边长为a,那么它的外接圆的半径r和内切圆的半径d分别是___,它们之间满足的关系是:___. 2如果正三角形的边长为$a$,那么它的外接圆的半径$r$和内切圆的半径$d$分别是___,它们之间满足的关系是:___. 3正四面体边长,外接球半径和内切球半径分别是多少? 4设正三角形的边长为a,它的外接...
解:设三角形三边为a,b,c,面积为S,外接圆半径为R,内切圆半径为r 则S=1/2*(a+b+c)*r 得r=2S/(a+b+c)注:证明:设O为内切圆心,则三角形ABC分解成OAB,OBC,OAC三个三角形,其面积分别是1/2*cr,1/2*ar,1/2*br。则S=1/2*ar+1/2*br+1/2*cr=1/2*(a+b+c)*r ...
外接圆半径R=六边形边长。因为六边形,每条边对应的圆周角为60°又因为圆心到接点的距离即为半径,所以相等。可知这是等边三角形。所以半径R即等于六边形边长。内切圆半径r=(根号3)a/2 a为六边形边长 过圆心作条辅助线垂直边长,即为内切圆半径。再根据三角形的三边定理可得。
3.正三角形的内切圆半径r与外接圆半径R的数量关系为R=2r. 试题答案 在线课程 分析如图,△ABC为等边三角形,点O为中心,作OH⊥BC于H,连接BO,根据等边三角形的性质得∠OBH=30°,然后根据含30度的直角三角形三边的关系可得到OH:OB=1:2. 解答解: ...