y的二阶导数减y的一阶导数等于x 求y 相关知识点: 试题来源: 解析 y''-y'=x设y=ax^2+bx+c.y'=2ax+by''=2a所以:2a-2ax-b=x所以a=-1/2,所以b=-1所以:y=-(1/2)x^2-x+c.结果一 题目 y的二阶导数减y的一阶导数等于x 求y 答案 y''-y'=x设y=ax^2+bx+c.y'=2ax+by''=2a所以:2a-2a...
y'=2ax+by''=2a所以:2a-2ax-b=x所以a=-1/2,所以b=-1所以:y=-(1/2)x^2-x+c. 解析看不懂?免费查看同类题视频解析查看解答 相似问题 Y等于1/(2减X)的导数是 y=x^1/2的导数等于多少? y=f(x^2)的二阶导数等于什么 特别推荐 热点考点 2022年高考真题试卷汇总 2022年高中期中试卷汇总 ...
==>d[e^(-y)]/√[C1²-e^(-2y)]=±dx ==>arcsin[e^(-y)/C1]=C2±x (C2是积分常数) ==>e^(-y)=C1sin(C2±x) 故原方程的通解是e^(-y)=C1sin(C2±x) (C1,C2是积分常数). 分析总结。 y的二阶导数减去y的一阶导数的平方等于1求方程的通解结果...
设y'=p,则y''=pdp/dy代入原方程,得pdp/dy-p²=1==>pdp/(1+p²)=dy==>d(1+p²)/(1+p²)=2dy==>ln(1+p²)=2y+ln(C1²) (C1是积分常数)==>1+p²=C1e^(2y)==>p=±√[C1²e^(2y)-1]==>dy/√[C1²e^(2y)-1]=±dx==>e^(-y)dy/√[C1²-e^(-2y)...
p(x) =-1 ∫p(x)dx = -x e^[∫p(x)dx] = e^(-x)// y''-y' =x 两边乘以 e^(-x)e^(-x). (y''-y') =xe^(-x)d/dx ( e^(-x). y' )=xe^(-x)e^(-x). y' =∫ xe^(-x) dx =-∫ x de^(-x)=-x.e^(-x) +∫ e^(-x) dx =-x.e^(-x)...
希望有所帮助 有
y的二阶导等于y一阶导加 x求y通解 答案 y"=y'+x,令y'=t,则y"=t',即t'- t =x这就化成了一阶线性微分方程,由公式可以知道t的通解为:t=e^x * [ ∫ x* e^(-x)dx +C ] C为常数即t = e^x * [-x *e^(-x) -e^(-x) +C] = Ce^x -x -1 所以y'= Ce^x -x -1即dy=(...
求一阶导数和二阶导数 y=e^(-t)sint 相关知识点: 代数 函数的应用 导数的运算 基本初等函数的导数公式 导数运算法则 试题来源: 解析 y′=-e^(-t)sint+e^(-t)cost=e^(-t)(cost-sint) y′′=-+e^(-t)(-sint-cost)= .-2e^(-t)cost...
已知,函数 f(x) 在(−∞,+∞) 内存在二阶导数,且 f(x)=f(−x),当 x<0 时有f′(x)<0, f′′(x)>0, 则当 x>0 时,则 f′(x) 和f′′(x) 与0 的大小关系是怎样的?难度评级:二、解析 根据函数图像可知,偶函数的一阶导(增减性)在 Y 轴两侧是相反的,二阶导(凹凸性)在 Y 轴...
y''-y'=x 设y=ax^2+bx+c.y'=2ax+b y''=2a 所以:2a-2ax-b=x 所以a=-1/2,所以b=-1 所以:y=-(1/2)x^2-x+c.