model.backbone}}, frozen_stages=4, # 冻结图像骨干网络的阶段数 text_model=dict( type='HuggingCLIPLanguageBackbone', model_name='openai/clip-vit-base-patch32', frozen_modules=['all'])), neck=dict(type='YOLOWorldDualPAFPN', freeze_all=True, guide_channels=text_channels, embed_channels=neck...
OptMultiConfig# 导入自定义的模型注册器和工具函数frommmyolo.registryimportMODELSfrommmyolo.models.utilsimportmake_divisible, make_roundfrommmyolo.models.necks.yolov8_pafpnimportYOLOv8PAFPN# 注册YOLOWorldPAFPN类为模型@MODELS.register_module()classYOLOWorldPAFPN(YOLO...
base_lr =2e-4weight_decay =0.05train_batch_size_per_gpu =16load_from='pretrained_models/yolo_world_l_clip_base_dual_vlpan_2e-3adamw_32xb16_100e_o365_goldg_train_pretrained-0e566235.pth'persistent_workers =False# 模型设置model =dict(type='YOLOWorldDetector', mm_neck=True, num_train_...
.\YOLO-World\yolo_world\datasets\transformers\mm_transforms.py 代码语言:javascript 复制 # 导入所需的库importjsonimportrandom from typingimportTupleimportnumpyasnp from mmyolo.registryimportTRANSFORMS# 注册 RandomLoadText 类为TRANSFORMS模块 @TRANSFORMS.register_module()classRandomLoadText:def__init__(self...
coeff_pred # 注册 YOLO World Segmentation Head 类到 MODELS 模块 @MODELS.register_module() class YOLOWorldSegHead(YOLOv5InsHead): # 特殊初始化函数,用于处理不同算法的特殊初始化过程 def special_init(self): """Since YOLO series algorithms will inherit from YOLOv5Head, but different algorithms hav...
For training YOLO-World, we mainly adopt two kinds of dataset classs: 1.MultiModalDataset MultiModalDatasetis a simple wrapper for pre-defined Dataset Class, such asObjects365orCOCO, which add the texts (category texts) into the dataset instance for formatting input texts. ...
results.append(self.out_layers[idx](outs[idx])) return tuple(results) # 使用 @MODELS 注册 YOLOWorldDualPAFPN 类 @MODELS.register_module() # 定义 YOLOWorldDualPAFPN 类,继承自 YOLOWorldPAFPN 类 class YOLOWorldDualPAFPN(YOLOWorldPAFPN): """Path Aggregation Network used in YOLO World v8....
CVPR2024 | YOLO-World检测一切对象模型,超级轻量级开放词汇目标检测方法,论文解读+源码复现,2小时带你吃透YOLO-World算法共计4条视频,包括:YOLO-WORLD、YOLOV9论文知识点解读、YOLOV8等,UP主更多精彩视频,请关注UP账号。
无需服务器,飞浆识字+YOLOv5识别,一键全分辨率匹配 游人渐稀-开发定制 1421 0 1:12:05 【CVPR2024】YOLO-WORLD:能够实时识别和检测图像中任何物体的系统或方法! 人工智能算法工程师 658 72 1:52:55 迪哥带你读顶会!CVPR2024|YOLO-World:超级轻量级开放词汇目标检测方法,论文解读+源码复现,迪哥2小时带...
其中提出一种新的重参数化的视觉语言路径聚合网络(RepVL-PAN)和区域文本对比损失,可以实时以零样本方式高效地检测各种物体,性能表现极其出色!代码已开源!迪哥还给大家准备了YOLO系列目标检测算法学习资料包!内含:YOLOV1~YOLOV9 YOLOX YOLO-World等系列算法的论文PDF+源码资料,获取方式在评论区! 展开更多...