YOLO-World通过简单的提示输入,实现对任何对象的识别。要访问该模型,请访问YOLO-World的GitHub页面。 YOLO-World的创新填补了现有零阶目标检测技术中的关键空白,提高了处理速度。与领域内常见的基于Transformer的较慢模型不同,YOLO-World采用了更快的基于CNN的架构,源自YOLO框架。 具体细节请参阅下面的YOLO-World原文,...
YOLO-World模型可根据提示与描述性文本实现检测图像中的任何物体。YOLO-World 可大幅降低计算要求,同时具有杰出的性能指标,是新一代的开放动词对象检测模型。 模型结构主要由两个部分组成分别是实现文本编码与解码的Clip结构模型与实现图像特征提取支持对象检测YOLOv8系列网络模型。 对比传统的深度学习YOLO系列对象检测网络与...
YOLO-World 模型可轻松集成到您的Python 应用程序中。Ultralytics 提供用户友好的Python API 和CLI 命令,以简化开发。 列车使用情况 提示 我们强烈建议使用yolov8-worldv2自定义训练模型,因为它支持确定性训练,而且易于导出其他格式,如onnx/tensorrt 。 物体检测使用train方法,如下图所示: ...
相比之下,作者提出了YOLO-World,旨在实现高效的开集目标检测,具有实时推理和更容易的下游应用部署。与同样通过语言模型对齐探索开集检测的ZSD-YOLO[50]不同,YOLO-World引入了一个新的YOLO框架,并采用了一种有效的预训练策略,提升了开集的性能和泛化能力。 3 Method Pre-training Formulation: Region-Text Pairs 传统...
最近发现ultralytics的仓库也集成了 YOLO World,同时在导出 ONNX 的操作上也有更好的开源项目进行了拓展ONNX-YOLO-World-Open-Vocabulary-Object-Detection,因此我们又尝试动态开集方案的部署,并取得了一些实质性的进展,分享给大家。 你将获得 如何导出基于 Ultralytics repo 的 YOLO World v2 ONNX 模型和适用于 ...
关于YOLO-World: 其是一个使用开放词汇进行目标检测的新框架,且是以YOLOv8框架为detector,所以其特点就继承了YOLO系列,也即轻量、快速、性能好。另外,既然是文本和图片一起作为输入,那么就需要有一个文本embedding的模块,这里用的是CLIP,其将用户输入的词汇列表转换为特征向量,与输入图像一起进行推理。
多模态时代,开放词汇目标检测,正在超越Faster R-CNN、DETR、YOLOs等传统方法,成为极具潜力的研究方向,近两年顶会创新也层出不穷,腾讯重磅发布不久的YOLO-World,便是一种先进的开放词汇检测器,基于简洁高效的YOLOv8架构,通过视觉语言建模,以及大规模数据集的预训练,能够识别并定位训练集中未出现的新类别物体,具备超强...
(1)介绍了YOLO-World,一种先进的开放词汇对象检测器,具有现实世界应用的高效率。 (2)提出了一个可重新参数化的视觉语言PAN来连接视觉和语言特征,并为YOLO-World提出了一个开放词汇区域文本对比预训练方案。 (3)在大规模数据集上预先训练的YOLO-World展示了强大的Zero-shot性能,并在LVIS上以52.0 FPS实现了35.4 AP...
CVPR2024 | YOLO-World检测一切对象模型,超级轻量级开放词汇目标检测方法,论文解读+源码复现,2小时带你吃透YOLO-World算法共计4条视频,包括:YOLO-WORLD、YOLOV9论文知识点解读、YOLOV8等,UP主更多精彩视频,请关注UP账号。
1.YOLO-World 提示技巧 1.1忽略置信度大小 对于大多数流行的计算机视觉模型,置信度超过80%通常代表“高置信度”。YOLO-World并不遵循这一趋势。你可以期望置信度低至5%,1%,甚至0.1%来产生有效的预测。 虽然对于其他流行模型(如YOLOv8)来说,过滤掉所有低于80%的预测是很正常的,但YOLO World 准确地预测了上图中的...