YOLO-World模型可根据提示与描述性文本实现检测图像中的任何物体。YOLO-World 可大幅降低计算要求,同时具有杰出的性能指标,是新一代的开放动词对象检测模型。 模型结构主要由两个部分组成分别是实现文本编码与解码的Clip结构模型与实现图像特征提取支持对象检测YOLOv8系列网络模型。 对比传统的深度学习YOLO系列对象检测网络与...
CVPR2024 | YOLO-World检测一切对象模型,超级轻量级开放词汇目标检测方法,论文解读+源码复现,2小时带你吃透YOLO-World算法共计4条视频,包括:YOLO-WORLD、YOLOV9论文知识点解读、YOLOV8等,UP主更多精彩视频,请关注UP账号。
YOLO-World最速上手 ✦ 60分钟带你训练自定义模型!YOLO-Worldy论文带读+代码复现共计8条视频,包括:1.YOLO-WORLD、2.YOLOV9论文知识点解读、3.YOLOV8等,UP主更多精彩视频,请关注UP账号。
YOLO-World代表了开放词汇目标检测技术的重大进步,证明了像YOLO系列中的简化检测器一样的检测器在开放词汇任务中可以提供强大的性能。这一突破对于需要效率和速度的应用特别重要,例如边缘应用。 YOLO-World具备基础能力,使其能够解释提示的上下文,以进行准确的检测,而无需进行特定的类别训练。它利用大量的图像-文本对和...
关于YOLO-World: 其是一个使用开放词汇进行目标检测的新框架,且是以YOLOv8框架为detector,所以其特点就继承了YOLO系列,也即轻量、快速、性能好。另外,既然是文本和图片一起作为输入,那么就需要有一个文本embedding的模块,这里用的是CLIP,其将用户输入的词汇列表转换为特征向量,与输入图像一起进行推理。
python cli tracking machine-learning computer-vision deep-learning hub pytorch yolo image-classification object-detection pose-estimation instance-segmentation ultralytics rotated-object-detection yolov8 segment-anything yolo-world yolov10 yolo11 Updated Apr 10, 2025 Python NickSwardh / YoloDotNet Star...
最近发现ultralytics的仓库也集成了 YOLO World,同时在导出 ONNX 的操作上也有更好的开源项目进行了拓展ONNX-YOLO-World-Open-Vocabulary-Object-Detection,因此我们又尝试动态开集方案的部署,并取得了一些实质性的进展,分享给大家。 你将获得 如何导出基于 Ultralytics repo 的 YOLO World v2 ONNX 模型和适用于 ...
一、引子 CV做了这么多年,大多是在固定的数据集上训练,微调,测试。突然想起来一句话,I have a dream!就是能不能不用再固定训练集上捣腾,也就是所谓的开放词汇目标检测(OVD)。偶尔翻翻AI新闻,发现现在CV领域有在卷开集目标检测的趋势。刚好翻到,YOLO-World这一开源
YOLO-World利用开放式词汇检测功能重振了YOLOv8 框架,采用了视觉语言建模和在大量数据集上进行预训练的方法,能够以无与伦比的效率在零拍摄场景中出色地识别大量物体。 主要功能 实时解决方案:利用CNN 的计算速度,YOLO-World 可提供快速的开放词汇检测解决方案,满足各行业对即时结果的需求。 效率和性能:YOLO-World 可...
1.YOLO-World 提示技巧 1.1忽略置信度大小 对于大多数流行的计算机视觉模型,置信度超过80%通常代表“高置信度”。YOLO-World并不遵循这一趋势。你可以期望置信度低至5%,1%,甚至0.1%来产生有效的预测。 虽然对于其他流行模型(如YOLOv8)来说,过滤掉所有低于80%的预测是很正常的,但YOLO World 准确地预测了上图中的...