解:∵y=ax 2 +bx+c=a(x+ b 2a ) 2 + 4ac-b2 4a ,∴对称轴是x=- b 2a ,顶点坐标是(- b 2a , 4ac-b2 4a ),故答案为:- b 2a ,(- b 2a , 4ac-b2 4a ). 将二次函数配方后即可得到答案. 本题考查了二次函数的性质,牢记其顶点坐标公式是解决二次函数的
用配方法求二次函数y= ax2 +bx+c的对称轴和顶点坐标. 答案 y=ax2+bx+c=a(x2+ bax+ b24a2)- b24a+c=a(x+ b2a)2+ 4ac−b24a,所以,y=a(x+ b2a)2+ 4ac−b24a.故答案为:对称轴x=- b2a ,顶点坐标(- b2a , 4ac−b24a)故答案为:x=- b2a,顶点坐标(- b2a, 4ac−b24a)主要考查...
解答:由二次函数的性质可知,函数y=ax2+bx+c(a≠0,a、b、c为常数)的对称轴是x=-,顶点坐标是(-,). 故答案为:x=-;(-,). 点评:本题考查的是二次函数的性质,即二次函数y=ax2+bx+c(a≠0,a、b、c为常数)的对称轴是x=-,顶点坐标是(-,). ...
所以:y=ax^2+bx+c(a,b,c为常数,a≠0)的顶点是(-b/2a,(b^2-4ac)/4a)对称轴是 X= -b/2a 具体可分为下面几种情况:当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位得到;当h>0时,y=a(x+h)²的图像可由抛物线y=ax²向左平行...
当△<0时:a>0时 y>0,a<0时 y<0,y≠0 ax^2;+bx+c-y=0 △≥0 对称轴x=-b/2a y=ax^2+bx+c 关于x轴对称:y变为相反数,x不变:y=a(-x)^2+b(-x)+c 即:y=ax^2-bx+c 求y=ax^2+bx+c关于y轴对称也是如此 若ab同号,对称轴在y轴左侧,若ab异号,对称轴在y轴右侧...
相关知识点: 试题来源: 解析 -b2a(-b2a,4ac-b24a) 试题分析:将二次函数配方后即可得到答案.试题解析:∵y=ax2+bx+c=a(x+b2a)2+4ac-b24a,∴对称轴是x=-b2a,顶点坐标是(-b2a,4ac-b24a),故答案为:-b2a,(-b2a,4ac-b24a).反馈 收藏
∵ y=ax^2+bx+c=a(x+(2a))^2+(4ac-b^2)(4a), ∴ 对称轴是x=-(2a),顶点坐标是(-(2a),(4ac-b^2)(4a)), 故答案为:-(2a),(-(2a),(4ac-b^2)(4a)). 将二次函数配方后即可得到答案.结果一 题目 二次函数的图象是___,它的顶点坐标是___,对称轴是___. 答案 二次函数的图象是抛...
解答解:∵二次函数的y=ax2+bx+c的对称轴在y轴的右侧, ∴对称轴x=-b2ab2a>0, ∴a、b异号,即ab<0. ∵该抛物线与y轴的交点是P(0,-2), ∴c=-2<0, ∴点A(ab,c)位于第三象限. 故答案为:三. 点评本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、...
=a(x^2+bx/a)+c =a[x^2+2*(b/2a)*x+(b/2a)^2-(b/2a)^2]+c =a(x+b/2a)^2-a*b^2/4a^2+c =a(x+b/2a)^2-b^2/4a+4ac/4a =a(x+b/2a)^2+(4ac-b^2)/(4a)=a[x-(-b/2a)]^2+(4ac-b^2)/(4a)所以顶点是:[-b/2a,(4ac-b^2)/(4a)]对称轴是x=...
如下:1、抛物线y=ax2+bx+c(a≠0)的图象:当a>0时,开口向上;当a<0时,开口向下,对称轴是直线x=- b/2a,顶点坐标是(-b/2a ,(4ac-b/4a)。2、抛物线y=ax2+bx+c(a≠0)的性质:若a>0,当x≤- b/2a时,y随x的增大而减小;当x≥- b/2a时,y随x的增大而增大。若a<0,...