解:∵y=ax 2 +bx+c=a(x+ b 2a ) 2 + 4ac-b2 4a ,∴对称轴是x=- b 2a ,顶点坐标是(- b 2a , 4ac-b2 4a ),故答案为:- b 2a ,(- b 2a , 4ac-b2 4a ). 将二次函数配方后即可得到答案. 本题考查了二次函数的性质,牢记其顶点坐标公式是解决二次函数的有关知...
相关知识点: 试题来源: 解析 -b2a(-b2a,4ac-b24a) 试题分析:将二次函数配方后即可得到答案.试题解析:∵y=ax2+bx+c=a(x+b2a)2+4ac-b24a,∴对称轴是x=-b2a,顶点坐标是(-b2a,4ac-b24a),故答案为:-b2a,(-b2a,4ac-b24a).反馈 收藏
因此,当二次函数“y=ax^2+bx+c (a≠0)”的对称轴(x=-b/(2a))与y轴(x=0)重合时,就变成了偶函数。此时,由直线“x=-b/(2a)”和直线“x=0”重合可得:“-b/(2a)=0”,解得b=0.反之,当b=0时,二次函数“y=ax^2+bx+c(a≠0)”的对称轴方程为x=-0/(2a)=0。此时二次函数“y...
解答:由二次函数的性质可知,函数y=ax2+bx+c(a≠0,a、b、c为常数)的对称轴是x=-,顶点坐标是(-,). 故答案为:x=-;(-,). 点评:本题考查的是二次函数的性质,即二次函数y=ax2+bx+c(a≠0,a、b、c为常数)的对称轴是x=-,顶点坐标是(-,). ...
所以:y=ax^2+bx+c(a,b,c为常数,a≠0)的顶点是(-b/2a,(b^2-4ac)/4a)对称轴是 X= -b/2a 具体可分为下面几种情况:当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位得到;当h>0时,y=a(x+h)²的图像可由抛物线y=ax²向左平行...
用配方法求二次函数y= ax2 +bx+c的对称轴和顶点坐标. 答案 y=ax2+bx+c=a(x2+ bax+ b24a2)- b24a+c=a(x+ b2a)2+ 4ac−b24a,所以,y=a(x+ b2a)2+ 4ac−b24a.故答案为:对称轴x=- b2a ,顶点坐标(- b2a , 4ac−b24a)故答案为:x=- b2a,顶点坐标(- b2a, 4ac−b24a)主要考查...
抛物线y = ax^2 + bx + c的对称轴是( ) A. x=-b/a B. x = --b/a C. x =b/(2a) D. x = -b/(2a) 相关知识点: 试题来源: 解析 D[分析]根据抛物线对称轴的计算公式判断.[详解]∵抛物线y = ax^2 + bx + c的对称轴是x = - b/(2a),故选D. 反馈 收藏 ...
如下:1、抛物线y=ax2+bx+c(a≠0)的图象:当a>0时,开口向上;当a<0时,开口向下,对称轴是直线x=- b/2a,顶点坐标是(-b/2a ,(4ac-b/4a)。2、抛物线y=ax2+bx+c(a≠0)的性质:若a>0,当x≤- b/2a时,y随x的增大而减小;当x≥- b/2a时,y随x的增大而增大。若a<0,...
<0,∴对称轴在y轴的左侧.故答案为:右,左. 根据对称轴x=- b za即可判断. 本题考点:二次函数图象与系数的关系. 考点点评:本题考查了二次函数的性质,牢记对称轴公式是解决二次函数的有关知识的基础. 解析看不懂?免费查看同类题视频解析查看解答 相似问题 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示...
二次函数y= ax^2+ bx+ c的图象是怎样的?【分析】根据a的符号确定抛物线的开口方向,再根据对称轴的位置判断抛物线与x轴的交点情况,从而知道其大致图象.【解答】解:当a > 0时,抛物线的开口向上,对称轴是x = -b/2a,当- b/2a > 0,即a、b同号时,抛物线与x轴有两个交点,以对称轴...