分解因式:xy(x2−y2)+yz(y2−z2)+xz(z2−x2).A.(x+y+z)(x−y)(y−z)(z−x)B.−(x+y+z)(x+y)(y−z)(z−x)C
B当x=y时,原式= yz(y2-z2)+yz(z2-y2)=0,根据因式定理和轮换对称式性质,设原式=k(x-y)(y-z)(z-x)(x+y+z),k为常数,当x=0,y=1,z=2时,原式=-6=6k,解得k=-1,∴原式=-(x-y)(y-z)(z-x)(x+y+z). 结果二 题目 分解因式:xy(x2−y2)+yz(y2−z2)+xz(z...
答案解析 查看更多优质解析 解答一 举报 xy(x2-y2)+yz(y2-x2+x2-z2)+zx(z2-x2) =(xy-yz)(x2-y2)+(yz—xz)(x2-z2)=(x-y)(x-z)(y(x+y)-z(x+z))=(x-y)(x-z)(x+y+z)(y-z) 解析看不懂?免费查看同类题视频解析查看解答 更多答案(1) ...
xy(x2-y2)+yz(y2-x2+x2-z2)+zx(z2-x2)=(xy-yz)(x2-y2)+(yz—xz)(x2-z2)=(x-y)(x-z)(y(x+y)-z(x+z))=(x-y)(x-z)(x+y+z)(y-z)
已知x2-yz=y2-xz=z2-xy,求证:x=y=z或x+y+z=0. 试题答案 在线课程 证明:∵x2-yz=y2-xz=z2-xy ∴x2-yz-y2+xz=0 ∴x2-y2=yz-xz x2-yz-z2+xy=0 y2-xz-z2+xy=0 xz-xy=z2-y2 整理得:z2-x2+yz-xy=0 ∴yz-xy=xy-yz ...
xy(x2-y2)+yz(y2-z2)+zx(z2-x2) 因式分解 对称多项式 相关知识点: 试题来源: 解析 xy(x2-y2)+yz(y2-x2+x2-z2)+zx(z2-x2) =(xy-yz)(x2-y2)+(yz—xz)(x2-z2)=(x-y)(x-z)(y(x+y)-z(x+z))=(x-y)(x-z)(x+y+z)(y-z)...
2yz-2xy=0yz=xy∴z2-x2=0∴z=x同理可证x=y∴x=y=z∴x+y+z=0提示1:本题需先根据已知条件进行整理,把式子x2-yz=y2-xz=z2-xy分别进行移项,然后再进行抵消,即可得出它们各自的值,最后证得结果.提示2:本题主要考查了整式的等式证明,在证得过程中要注意知识的综合运用,再进行抵消是解题的关键....
=xy(x²-y²)-yz(x²-y²)+yz(x²-z²)-zx(x²-z²)=(xy-yz)(x²-y²)+(yz-zx)(x²-z²)=y(x-z)(x+y)(x-y)+z(y-x)(x+z)(x-z)=y(x-z)(x+y)(x-y)-z(x-y)(x+z)(x-z)=(x-y)(x-z)[y(x+y)-z(x+z)]=(x-y)(x-z)[(xy-xz)+...
xy+xz=8-x2① xy+yz=12-y2② yz+zx=-4-z2③ , 三个方程相加得到:(x+y+z)2=16, ∴x+y+z=4或x+y+z=-4 由x+y+z=4得到y+z=4-x代入方程①得:x(4-x)=8-x2,整理得:x=2. 由x+y+z=-4得到y+z=-4-x代入方程①得:x(-4-x)=8-x2,整理得:x=-2. ...
,然后把x2+y2+z2+xy-yz+xz进行变形得到x2+y2+z2-xy-yz-xz= (2x2+2y2+2z2-2xy-2yz-2xz),根据完全平方公式有原式= [(x-y)2+(y-z)2+(x-z)2],再代值计算即可. 点评:本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力. ...