ln²(x+1) +x *2ln(x+1) *[ln(x+1)]'=ln²(x+1) +2xln(x+1) /(x+1)而如果是x^ln(x+1)就先用对数恒等式,得到e^[lnx *ln(x+1)]再求导
∫xln(1+x)dx 相关知识点: 试题来源: 解析 反对幂指三 前面设为u,后面的设为v' (最后两个随意)令u=ln(x+1) ,v'=x∫xln(1+x) dx=(x2/2)ln(1+x)-∫(x2/2)/(1+x) dx=(x2/2)ln(1+x)-∫[(x2/2)-(1/2)+(1/2)]/(1+x) dx=(x2/2)ln(1+x)-∫[(x-1)/2+1/2(1...
百度试题 题目思路: 分部积分。 ★★(2) xln(x 1相关知识点: 试题来源: 解析 错误 反馈 收藏
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners who may combine it with other information that you’ve provided to them or...
∫xln(x+1)dx=∫ln(x+1)d(1/2*x^2)=1/2×x^2×ln(x+1)-1/2×∫x^2dln(x+1)=1/2×x^2×ln(x+1)-1/2×∫x^2/(x+1)dx=1/2×x^2×ln(x+1)-1/2×∫[x-1+1/(x+1)]dx=1/2×x^2×ln(x+1)-1/2×[1/2×x^2-x+ln(x+1)]+C=1/2×(...
∫xln(x+1)dx=∫ln(x+1)d(1/2*x^2)=1/2×x^2×ln(x+1)-1/2×∫x^2dln(x+1)=1/2×x^2×ln(x+1)-1/2×∫x^2/(x+1)dx=1/2×x^2×ln(x+1)-1/2×∫[x-1+1/(x+1)]dx=1/2×x^2×ln(x+1)-1/2×[1/2×x^2-x+ln(x+1... 解析看不懂?免费查看同类题视频...
原式=1/2∫ln(1+x)dx²=1/2x²ln(1+x)-1/2∫x²dln(1+x)=1/2x²ln(1+x)-1/2∫x²/(1+x) dx=1/2x²ln(1+x)-1/2∫(x²-1+1)/(1+x) dx=1/2x²ln(1+x)-1/2∫[(x²-1)/(x+1)+1/(1+x)] dx=1/2x²ln(1+x)-1/2∫[(x-1)+1/(1+x)] dx...
百度试题 结果1 题目【题目】f(x)=xln(1+x)求的导数 相关知识点: 试题来源: 解析 【解析】这理: ln(1+x)^2=((1+x)^1)/(1+x)=1/(1+x) 反馈 收藏
原式=1/2∫ln(1+x)dx²=1/2x²ln(1+x)-1/2∫x²dln(1+x)=1/2x²ln(1+x)-1/2∫x²/(1+x) dx=1/2x²ln(1+x)-1/2∫(x²-1+1)/(1+x) dx=1/2x²ln(1+x)-1/2∫[(x²-1)/(x+1)+1/(1+x)] dx=1/2x²ln(1+x)-1/2∫[(x-1)+1/(1+x)] dx...
简单分析一下,答案如图所示 ∫