令⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪∂L∂x=2x+λ(3x2−y)=0∂L∂y=2y+λ(3y2−x)=0x3−xy+y3=1,得唯一驻点x=1,y=1,即M1(1,1). 考虑边界上的点,M2(0,1),M3(1,0); 距离函数f(x,y)=x2+y2−−−−−−−√在三点的取值分别为f(1...
【答案】:
x=2x+λ(3x2?y)=0?L?y=2y+λ(3y2?x)=0x3?xy+y3=1,得唯一驻点x=1,y=1,即M1(1,1).考虑边界上的点,M2(0,1),M3(1,0);距离函数f(x,y)=x2+y2在三点的取值分别为f(1,1)=2, f(0,1)=1, f(1,0)=1,所以最长距离为2,最短距离为1.简单计...
故答案为:x2-y2;x3-y3;x4-y4.(2)猜想(x-y)(xn-1+xn-2y+…+xyn-2+yn-1)=xn-yn.故答案为:xn-yn.(3)①(x-y)(x5+x4y+x3y2+x2y3+xy4+y5)=x6-y6;故答案为:x6-y6;②由(2)得,当x=3,y=1,n=2020时,得(3-1)(32019+32018×1+32017×12+…+3×12018+...
解答:解:x3+y3-3xy+1=0化为(x+y)[(x+y)2-3xy]-3xy+1=0, ∴(x+y)3-3xy(x+y+1)+1=0, 化为(x+y+1)[(x+y)2-(x+y)+1]-3xy(x+y+1)=0, ∴(x+y+1)(x2+y2-xy-x-y+1)=0, ∴x+y+1=0,x2+y2-xy-x-y+1=0, ...
(1)x3-x2y+xy2-y3的项是x3,-x2y,xy2,-y3,次数是3,是三次四项式; (2)-3x6+2x2+1 的项是-3x6,2x2,1,次数是6,是,六次三项式. 此题主要考查了多项式,要掌握多项式关于项和次数的定义,关键是掌握多项式次数的确定方法,确定多项式的次数,要先确定多项式各项的次数找出最高次项,最高次项的...
【答案】:A 采用特殊值法,取x=1,y=0,代入所求式,值为1,选A。
正确答案:A 解析:解法一:x3-3xy-y3=x3-y3-3xy=(x-y)(x2+xy+y2)-3xy=x2-2xy+y2=(x-y)2=1。所以本题答案为A选项。解法二:由x-y=1,可设x=1,y=0,并代入x3-3xy-y3=1,所以本题答案为A选项。
结果一 题目 如果X-Y=1 求X3-3XY-Y3等于多少举例:2-1=12的立方-3X2X1-1的立方=1 答案 X³-Y³-3XY=(X-Y)(X²+XY+T²)-3XY=1*(X²+XY+T²)-3XY=X²-2XY+T²=(X-Y)²=1²=1相关推荐 1如果X-Y=1 求X3-3XY-Y3等于多少举例:2-1=12的立方-3X2X1-1的立方...
N. Tzanakis, The Diophantine equation x3 -3xy2 -y3 = 1 and related equations, J. Number Theory 18 (1984), no. 2, 192-205.The Diophantine equation x 3 −3xy 2 −y 3 = 1 and related equations - Tzanakis - 1984 () Citation Context ...e four solutions of the Diophantine ...