x2 3xy 2y2−4x−5y 3.A. (x+y−1)(x+2y−3) B. (x+y+1)(x+2y+3) C. (x−y+1)(x+2y−3) (2)x2−5xy+6y2+2y−4. 相关知识点: 试题来源: 解析 (1) A (2) (x−2y−2)(x−3y+2). (1) 原式=x2+(3y−4)x+(2y2−5y+3) =x...
(x+2y)(x+y),原式若能分解因式,它的两个因式一定是x+2y+m和x+y+n的形,用待定系数法来解决. 解:设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n), 即x2+3xy+2y2+4x+5y+3=x2+3xy+2y2+(m+n)x+(m+2n)y+mn, 比较对应项的系数,得 所以x2+3xy+2y2+4x+5y+3=(x+2y+3)(x+y...
分解因式:x2+3xy+2y2+4x+5y+3. ①x^3+y^3因式分解 ②2^+3xy+2y^2+4x+5y+3因式分解 因式分解x^2+3xy+2y^2+4x+5y+3 由于x^2+3xy+2y^2=(x+2y)(X+y),而4x+5y拆为x+2y和3(x+y),而3=1乘3 特别推荐 热点考点 2022年高考真题试卷汇总 2022年高中期中试卷汇总 2022年高中期末试卷...
解答:解:∵x2+3xy+2y2=(x+2y)(x+y), x2+4x+3=(x+1)(x+3), 2y2+5y+3=(2y+3)(y+1), ∴x2+3xy+2y2+4x+5y+3=(x+2y+3)(x+y+1). 点评:本题考查了因式分解的方法,属于基础题. 练习册系列答案 名校课堂系列答案 西城学科专项测试系列答案 ...
解:x^2+3xy+2y^2-4x-5y+3 =(x+y)(x+2y)-4x-5y+3 =(x+y-1)(x+2y-3)
设x^2+3xy+2y^2+4x+5y-3=(x+y+m)(x+2y+n)=x^2+3xy+2y^2+(m+n)x+(2m-n)y+mny+ny+ny+ny+12(m-n).比较两边对应项系数,得\(m+n=-4mn-n=5..解①②得m=1,n=3,代人③检验,等式成立.x^2+3xy+2y^2+4x+5y-3=(x+y+1)(x+2y+3).本题是二元二次多项式的一般形式,有可能...
【解答】解:∵x2+3xy+2y2=(x+2y)(x+y),x2+4x+3=(x+1)(x+3),2y2+5y+3=(2y+3)(y+1),∴x2+3xy+2y2+4x+5y+3=(x+2y+3)(x+y+1). 【分析】利用x2+3xy+2y2=(x+2y)(x+y),x2+4x+3=(x+1)(x+3),2y2+5y+3=(2y+3)(y+1)即可得出.反馈...
x^2+3xy+2y^2+4x+5y+3 =(x+y)(x+2y)+3(x+y)+(x+2y)+3 =(x+y)(x+2y+3)+(x+2y+3)=(x+y+1)(x+2y+3)
y+3xy2-5y3-8),如果x,y给出不同数值,上述多项式的值是否会发生改变?试说明理由. 试题答案 在线课程 答案:解析: 答案:上述多项式的值不会因为x,y的不同取值而发生变化. 理由:(x3+3x2y-2xy2+4y3+1)+(y3-xy2+x2y-2x3+2)+(x3-4x2y+3xy2-5y3-8)=x3+3x2y-2xy2+4y3+1+y3-xy2+x2y-2x...
x^2+3xy+2y^2+4x+5y+3= x^2+(2+1)xy+2y^2+4x+5y+3=x^2+2xy+xy+2y^24x+5y+3=x(x+2y)+y(x+2y)+4x+5y+3= (x+y)(x+2y)+4x+5y+3=(x+y)(x+2y)+x+2y+3x+3y+3=(x+y)(x+2y)+(x+2y)+3(x+y+1)=(x+y+1)(x+2y)+3(x+y+1)=(x+y+1)(x+2y+3...