求导,复合函数的求导鸭~
y=x^(1/x)两边取对,有:lny=(1/x)lnx,xlny=lnx 两边求导,得:lny+xy′/y=1/x 将y=x^(1/x)带入,得:y′=[x^((1/x)-2)]﹙1-lnx)当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。...
x的x分之一次方求导:y=x^(1/x),两边取对,有:lny=(1/x)lnx,xlny=lnx。两边求导,得:lny+xy′/y=1/x,将y=x^(1/x)带入,得:y′=[x^((1/x)-2)]﹙1-lnx)。求导过程
(xx)′=(exlnx)′=xx(lnx+1) 完美解法 √ 三、真 ⋅ 复合求导 y=u(s,t)=st s=f(x);t=g(x) f(x)=g(x)=x 按链式法则展开: dzdt=∂z∂xdxdt+∂z∂ydydt 交换图我就不画了... y′=tst−1f′(x)+stlnsg′(x)=g(x)[f(x)]g(x)−1f′(x)+...
x的x次方求导如下:用换元法:令:y=x^(x)则:y=x^(x)=e^[ln(x^x)]=e^(xlnx)再令u=xlnx,则y=e^uy'=(x^u)'•u'=(e^u)•(xlnx)'=[e^(xlnx)]•[x'lnx+x(lnx)']=[e^(xlnx)]•(lnx+x•1/x)=(x^x)(1+lnx)...
简介 x的n次方的导数应根据该函数的类型来推导,这属于高中数学知识,以下,是具体的解题步骤: 方法/步骤 1 判断类型 首先,拿到题目,要判断函数的类型,x的n次方属于幂函数。2 求导解答 对于,高中导数部分,基本初等函数的求导需要实记,而幂函数就是其中之一,故而,其求导如下图:
(x^x)'=(x^x)(lnx+1)求法:令x^x=y 两边取对数:lny=xlnx 两边求导,应用复合函数求导法则:(1/y)y'=lnx+1 y'=y(lnx+1)即:y'=(x^x)(lnx+1)求导是微积分的基础,同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如导数...
AZzsek 初级粉丝 1 x^x = e^(x ln x) 6楼2014-10-10 21:37 收起回复 爱珠珠绣玲姐 意见领袖 14 y=x^x=e^[ln(x^x)]=e^(xlnx)令u=xlnx,则y=e^uy'=(x^u)'•u'=(e^u)•(xlnx)'=[e^(xlnx)]•[x'lnx+x(lnx)']=[e^(xlnx)]•(lnx+x•1/x)=(x^x)(1+...
如下:x1的导数是:1/X ,可以写成x的-1次方。那么其导数y'=x^n,则 y'=nx^(n-1),这里y=x^(-1),所以y'=-1*x^(-1-1)=-1/x²。求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称...
幂指类函数求导,可采用两边取对数的方法。