=∫ (cos2t+1)/2 dt=(1/4) ∫ cos2t+1 d(2t)=(1/4) (sin2t+2t)+C=(1/2)*[x√(1-x²)+arcsinx]+C 解析看不懂?免费查看同类题视频解析查看解答 相似问题 求导后是根号下(1-x^2),它的原函数是什么? 求y=ln(x+根号下x^2+1)函数的导数 用【高中数学】知识求导函数的原函数,F...
方法之一:换元积分法,直接令t=√(1-x^2,反解x,然后积分,最后在反带回去;或者用三角函数进行代换。方法二:凑微分法,把分子的x提到微分中去,变成d(x*x/2,对此进行凑微分,凑出个d(1-x^2),前面多了呀一个系数-0.5。所以到此你就化简成了:x/√(1-x^2)dx=-0.5*(1-...
f(x)=√(1-x^2),定义域为1-x^2≥0,即-1≤x≤1 令y=√(1-x^2),则y≥0 且,y^2=1-x^2 ===> x^2+y^2=1 它表示的是以原点为圆心,半径为1的圆【即单位圆】圆的性质 1、圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。垂...
f(x)=√(1-x^2),定义域为1-x^2≥0,即-1≤x≤1 令y=√(1-x^2),则y≥0 且,y^2=1-x^2 ===> x^2+y^2=1 它表示的是以原点为圆心,半径为1的圆【即单位圆】
y=根号下1-x^2两边同时平方则y^2=1-x^2,该式等价于y^2+x^2=1.很明显 这个图像时一个圆,又因为x的取值范围为-1
根号下1-x^2的不定积分是什么 简介 结果是 (1/2)[arcsinx + x√(1 - x²)] + C。x = sinθ,dx = cosθ dθ∫ √(1 - x²) dx = ∫ √(1 - sin²θ)(cosθ dθ) = ∫ cos²θ dθ= ∫ (1 + cos2θ)/2 dθ = θ/2 + (sin2θ)/4 + C= (arcsinx)/2 + (...
根号下1-x方是偶函数。因为定义域为-1≤x≤1,关于原点对称;f(-x)=f(x)。所以是偶函数。关于原点对称的函数是奇函数,关于Y轴对称的函数是偶函数。如果f(x)为偶函数,则f(x+a)=f[-(x+a)]但如果f(x+a)是偶函数,则f(x+a)=f(-x+a)公式 1、如果知道函数表达式,对于函数f(x)...
√[(1-x)^2] = |1-x|.因为根号是取算术平方根,非负数, 故可用绝对值表示。
根号下1-x^2的原函数为:1/2(arcsinx+x√(1-x^2))。令x=sint,-π/2≤t≤π/2∫√(1-x^2)=∫costd(sint)=∫cos^2tdt=1/2∫(1+cos2t)dt=1/2(t+1/2sin2t)+C=1/2(arcsinx+x√(1-x^2))+C对1/2(arcsinx+x√(1-x^2))求导就得到根号1-x^2。已知函数f(x)...
根号下1-x^2的积分为1/2*arcsinx+1/2*x*√(1-x^2)+C。解:∫√(1-x^2)dx 令x=sint,那么 ∫√(1-x^2)dx=∫√(1-(sint)^2)dsint =∫cost*costdt =1/2*∫(1+cos2t)dt =1/2*∫1dt+1/2*∫cos2tdt =t/2+1/4*sin2t+C ...