前端主要处理传感器获取的数据,并将其转化为相对位姿或其他机器人可以理解的形式;后端则主要处理最优后验估计的问题,即位姿、地图等的最优估计。 机器人所拥有的传感器主要有:深度传感器(超声波、激光雷达、立体视觉等),视觉传感器(摄像头、信标),惯性传感器(陀螺仪、编码器、电子罗盘)以及绝对坐标(WUB,GPS)等。 ...
VINS-Fusion是香港科技大学于2019年开源的视觉-惯性SLAM系统,KITTI Visual Odometry 榜单中排名最靠前的开源双目 VO 方案,主要支持:单目+IMU、纯双目、双目+IMU、双目+IMU+GPS,是一个可以用于室外场景中无人车辆/机器人自主定位的优秀方案,以下是官方测试效果展示:...
VINS-Fusion是香港科技大学于2019年开源的视觉-惯性SLAM系统,KITTI Visual Odometry 榜单中排名最靠前的开源双目 VO 方案,主要支持:单目+IMU、纯双目、双目+IMU、双目+IMU+GPS,是一个可以用于室外场景中无人车辆/机器人自主定位的优秀方案,以下是官方测试效果展示: 几种方案效果对比 KITTI测试场景 如何学习 ? ...
前端主要处理传感器获取的数据,并将其转化为相对位姿或其他机器人可以理解的形式;后端则主要处理最优后验估计的问题,即位姿、地图等的最优估计。 机器人所拥有的传感器主要有:深度传感器(超声波、激光雷达、立体视觉等),视觉传感器(摄像头、信标),惯性传感器(陀螺仪、编码器、电子罗盘)以及绝对坐标(WUB,GPS)等。 ...
VINS-Fusion是香港科技大学于2019年开源的视觉-惯性SLAM系统,KITTI Visual Odometry 榜单中排名最靠前的开源双目 VO 方案,主要支持:单目+IMU、纯双目、双目+IMU、双目+IMU+GPS,是一个可以用于室外场景中无人车辆/机器人自主定位的优秀方案,以下是官方测试效果展示:...