对于 FP 16/FP 32 混合精度 DL,A100 的性能是 V100 的 2.5 倍,稀疏性的情况下提高到 5 倍。 在跑AI 模型时,如果用 PyTorch 框架,相比上一代 V100 芯片,A100 在 BERT 模型的训练上性能提升 6 倍,BERT 推断时性能提升 7 倍。 架构:A100采用了最新的Ampere架构,而V100则采用了前一代的Volta架构。Ampere...
对于 FP 16/FP 32 混合精度 DL,A100 的性能是 V100 的 2.5 倍,稀疏性的情况下提高到 5 倍。 在跑AI 模型时,如果用 PyTorch 框架,相比上一代 V100 芯片,A100 在 BERT 模型的训练上性能提升 6 倍,BERT 推断时性能提升 7 倍。 架构:A100采用了最新的Ampere架构,而V100则采用了前一代的Volta架构。Ampere...
对于 FP 16/FP 32 混合精度 DL,A100 的性能是 V100 的 2.5 倍,稀疏性的情况下提高到 5 倍。 在跑AI 模型时,如果用 PyTorch 框架,相比上一代 V100 芯片,A100 在 BERT 模型的训练上性能提升 6 倍,BERT 推断时性能提升 7 倍。 架构:A100采用了最新的Ampere架构,而V100则采用了前一代的Volta架构。Ampere...
对于 FP 16/FP 32 混合精度 DL,A100 的性能是 V100 的 2.5 倍,稀疏性的情况下提高到 5 倍。 在跑AI 模型时,如果用 PyTorch 框架,相比上一代 V100 芯片,A100 在 BERT 模型的训练上性能提升 6 倍,BERT 推断时性能提升 7 倍。 架构:A100采用了最新的Ampere架构,而V100则采用了前一代的Volta架构。Ampere...
1.1 V100 vs A100 vs H100 在了解了 GPU 的核心参数和架构后,我们接下来的对比理解起来就简单多了。 1.1.1 V100 vs A100 V100 是 NVIDIA 公司推出的[高性能计算]和人工智能加速器,属于 Volta 架构,它采用 12nm FinFET 工艺,拥有 5120 个 CUDA 核心和 16GB-32GB 的 HBM2 显存,配备第一代 Tensor Cores ...
1.1 V100 vs A100 vs H100 在了解了 GPU 的核心参数和架构后,我们接下来的对比理解起来就简单多了。 1.1.1 V100 vs A100 V100 是NVIDIA 公司推出的[高性能计算]和人工智能加速器,属于 Volta 架构,它采用 12nm FinFET 工艺,拥有 5120 个 CUDA 核心和 16GB-32GB 的 HBM2 显存,配备第一代 Tensor Cores 技...
1.1 V100 vs A100 vs H100 在了解了 GPU 的核心参数和架构后,我们接下来的对比理解起来就简单多了。 1.1.1 V100 vs A100 V100 是 NVIDIA 公司推出的[高性能计算]和人工智能加速器,属于 Volta 架构,它采用 12nm FinFET 工艺,拥有 5120 个 CUDA 核心和 16GB-32GB 的 HBM2 显存,配备第一代 Tensor Cores ...
1.1.3 A800 和 H800 从数字上来看,800 比 100 数字要大,其实是为了合规对 A100 和 H100 的某些参数做了调整。A800 相对比 A100 而言,仅限制了 GPU 之间的互联带宽,从 A100 的 600GB/s 降至 400GB/s,算力参数无变化。而 H800 则对算力和[互联带宽]都进行了调整。