背景意义:Unet是2015年发的论文,在unet网络出现之前,普遍认为,深度网络的成功训练需要数千个标注训练样本。所以,Unet这篇论文提出了如何利用少样本进行深度学习,然后效果还很不错。 论文名字:U-Net: Convol…
nnUNet 主要内容 创新点 方法 提取数据集特征 dataset fingerprint 自动化配置参数 固定参数 Learning rate 学习率 Loss function 损失函数 Architecture template 网络结构模板 Optimizer 优化器 Data augmentation 数据增强 Training procedure 训练过程 Inference procedure 推理过程 基于规则的参数 Intensity normalization 图像...
可以发现Unet论文中输入的图像是572×572,但是输出图像大小为388×388。也就是说推理上图黄色部分,需要蓝色区域内的图像数据作为输入。当黄色区域位于边缘时,就会产生边缘数据缺失的情况(上图右边蓝框中的空白部分)。我们可以在预处理中,对输入图像进行padding,通过padding扩大输入图像的尺寸,使得最后输出的结果正好是原始...
上篇对FCN的论文解读提到,FCN的训练依赖大量数据,并且仍存在分割结果不精细的弱点。今天要说的Unet就是受到FCN启发针对医学图像做语义分割,且可以利用少量的数据学习到一个对边缘提取十分鲁棒的模型,在生物医学图像分割领域有很大作用。据我了解,Unet是现在很多公司的魔改对话,在移动/嵌入式端的,也已经有把Unet做到了实...
论文概要 提出了UNet++:一种更有效的医学图像分割结构。它是一种深度监督的编码-解码器网络,编码器和解码器通过一系列嵌套、稠密的跳跃路径连接。 重新设计的跳跃路径旨在减小编码器和解码器特征图之间的语义鸿沟。我们认为当编码器和解码器特征图之间的语义鸿沟更小时,优化器就会处理一个更简单的学习任务。
语义分割算法之Unet论文理解 题外话 Unet是受到FCN启发针对医学图像做语义分割,且可以利用少量的数据学习到一个对边缘提取十分鲁棒的模型,在生物医学图像分割领域有很大作用。 网络架构 这就是整个网络的结构,大体分为收缩和扩张路径来组成。因为形似一个字母U,得名Unet。收缩路径仍然是利用传统卷积神经网络的卷积池化...
UNet是U形网络结构最经典和最主要的代表网络,因其网络结构是一个U形而得名,这类编解码的结构也因而被称之为U形结构。提出UNet的论文为U-Net: Convolutional Networks for Biomedical Image Segmentation,与FCN提出时间相差了两个月,其结构设计在FCN基础上做了进一步的改进,设计初衷主要是用于医学图像的分割。截至到...
Unet 论文解读 代码解读 论文地址:http://www.arxiv.org/pdf/1505.04597.pdf 论文解读 network Architecture: a. U-net建立在FCN的网络架构上,作者修改并扩大了这个网络框架,使其能够使用很少的训练图像就得到很 精确的分割结果。 b.添加上采样阶段,并且添加了很多的特征通道,允许更多的原图像纹理的信息在高分辨率...
近几年有关U-Net的研究是越来越火了,创新也是越来越难做,不过今年新技术KAN的出现给我们创造了一个新的突破口,特别KAN+UNet这种结合已经在医学图像分割等视觉任务中实现了超常发挥。 从多方面来讲,这种方法不仅可以增强模型对复杂特征和模式的捕捉能力,提高分割精度,还能通过优化参数和计算过程,提升模型的效率。更牛...
论文:http://arxiv.org/abs/2405.10530 代码:https://github.com/XiaoBuL/CM-UNet 年份:2024 创新点 提出了一种新的混合架构CM-UNet,该架构结合了CNN和Mamba模型,用于遥感图像的语义分割,通过CNN编码器提取局部特征,利用Mamba解码器整合全局信息。 CSMamba模块:设计了一个核心的CSMamba模块,使用通道和空间注意力...