UMAP和t-SNE算法上差异: 计算高维距离时,t-SNE会计算所有点之间的距离,通过Perplexity(困惑度)参数调整全局结构与局部结构间的软边界;而UMAP择只计算个点与最近k个点之间的距离,严格限制局部的范围; 两种算法在对信息损失的计算方法也有不同,t-SNE使用KL散度衡量信息损失,在全部结构上存在失真的可能;而UMAP使用二交...
3、减少拥挤问题该方法旨在缓解t-SNE中常见的“拥挤问题”,这种问题会导致簇被推得过远。4、减少随机性与t-SNE的随机性相比,PacMAP在多次运行中提供了更一致的结果。虽然有参数需要调整,但该方法设计得比t-SNE对参数变化更具鲁棒性。缺点 1、复杂性和熟悉度作为一种混合方法,PacMAP可能对熟悉简单、单一目标...
而降维分析则有助于揭示数据的潜在结构,发现细胞群体之间的差异。PCA、t-SNE和UMAP各有优缺点,在实际应用中,研究人员应根据分析需求和数据特性灵活选择合适的技术。
t-SNE是最广泛使用的可视化技术之一,但其性能在大型数据集中会受到影响。 UMAP是McInnes等人的一项新技术。与t-SNE相比,它具有许多优势,最显著的是提高了速度并更好地保存了数据的全局结构。例如,UMAP可以在3min之内处理完784维,70000点的MNIST数据集,但是t-SNE则需要45min。此外,UMAP倾向于更好地保留数据的全局结...
UMAP、t-SNE与PacMAP的终极对决 降维示例 左右滑动查看更多 降维将数据从高维空间转换到低维空间,以简化数据解释。 在Aivia中的应用:通过选择不同的测量方法,帮助用户为不同类别实现清晰的决策边界,这些测量方法可以用于不同的聚类技术。 Aivia中的三种降维方法: ...
https://www.youtube.com/watch?v=o_cAOa5fMhE 更多:http://v.dltheapk.com/item/10057 描述:在这段视频中,您将学习关于数据降维的三种常用方法:PCA, t-SNE 和 UMAP。当您想要可视化自动编码器的潜空间时,这些方法特别有用。如果您想了解更多有关这些技术的信息,以下是一些关键论文链接:- UMAP:Uniform ...
UMAP、t-SNE与PacMAP的zhongji对决 降维将数据从高维空间转换到低维空间,以简化数据解释。 在Aivia中的应用:通过选择不同的测量方法,帮助用户为不同类别实现清晰的决策边界,这些测量方法可以用于不同的聚类技术。 Aivia中的三种降维方法: UMAP –比t-SNE更快 ...
通过理解UMAP背后的理论后,理解算法的参数变得容易得多,尤其是与t-SNE中的perplexity参数相比。我们将考虑两个最常用的参数:n_neighbors和min_dist,它们有效地用于控制最终降维结果中局部和全局结构之间的平衡。 parameters n_neighbors 最重要的参数是n_neighbors,用于构造初始高维图的近似最近邻的数量。它有效地控制UMA...
t-SNE是由SNE(Stochastic Neighbor Embedding, SNE; Hinton and Roweis, 2002)衍生发展而来的一种机器学习算法,非常适用于高维数据降维到2维或者3维,进行可视化的后续分析。这种算法使得同一簇内的点(距离较近)聚合的更紧密,不同簇之间的点(距离较远)更加疏远。
在本视频中,您将了解三种非常常见的数据降维方法:PCA、t-SNE 和 UMAP。当您想要可视化自动编码器的潜在空间时,这些方法特别有用。 如果您想了解有关这些技术的更多信息,以下是一些关键论文: - UMAP:用于降维的均匀流形近似和投影 https://arxiv.org/abs/1802.03426 - 随机邻域嵌入Stochastic Neighbor Embedding (...