GitHub is where people build software. More than 150 million people use GitHub to discover, fork, and contribute to over 420 million projects.
Trajectory Prediction by RNN. Contribute to ruiyangsong/TrajectoryPrediction development by creating an account on GitHub.
论文地址:BeLFusion: Latent Diffusion for Behavior-Driven Human Motion Prediction 项目地址:https://github.com/BarqueroGerman/BeLFusion 15. Fast Inference and Update of Probabilistic Density Estimation on Trajectory Prediction 论文地址:Fast Inference and Update of Probabilistic Density Estimation on Trajector...
Code is available: https://github.com/realcrane/Human-Trajectory-Prediction-via-Neural-Social-Physics.doi:10.48550/arXiv.2207.10435Jiangbei YueDinesh ManochaHe WangSpringer, ChamEuropean Conference on Computer Vision
原文: It Is Not the Journey but the Destination: Endpoint Conditioned Trajectory Prediction github: github.com/HarshayuGira introduction 提出了预测终点条件网络(PECNet)用于灵活的人体轨迹预测。PECNet推断不同的轨迹终点,以生成长时间多模态轨迹预测。一种新颖的nonlocal social polling layer 使PECNet能够推断...
GitHub Lam SK, Pitrou A, Seibert S (2015) Numba: A llvm-based python jit compiler. In: Proceedings of the 2nd Workshop on the LLVM Compiler Infrastructure in HPC, pp 1–6 Toussaint B (2024) GitHub Repository, ’GRU-TAE_for_trajectory_prediction’. [Online]. Available : https://...
3 Trajectory-guided Control Prediction 3.1 Problem Setting Problem formulation.给定由传感器信号i、车辆速度v和高级导航信息g组成的状态x,该高级导航信息包括由全局规划器提供的离散导航命令和导航目标坐标,端到端模型需要输出由纵向控制信号throttle∈[0, 1]、brake∈[0, 1]和横向控制信号steer∈[-1, 1]组成的...
PIE: A Large-Scale Dataset and Models for Pedestrian Intention Estimation and Trajectory Prediction Amir Rasouli∗, Iuliia Kotseruba∗, Toni Kunic and John K. Tsotsos York University, Toronto, Ontario, Canada {aras,yulia k,tk,tsotsos}@eecs.yorku.ca Abstract ...
A PyPi package oftrajectory prediction toolsis published! Contributing Please feel free topull requeststo add new resources. Papers RNN Related An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling, 2018,code ...
The prediction result can be genearted withe command: python test_tnt.py -rm Path_to_Your_Model_File Others TBD TODO Data-Related: Preprocessing of test set; Model-Related: Create a base class for models; Training-Related: Enable multi-gpu training; (Using Nvidia APEX library, will be mer...