本文将分享 TensorRT-LLM 中低精度量化内容,并从精度和速度角度对比 FP8 与 INT8。首先介绍性能,包括速度和精度。其次,介绍量化工具 NVIDIA TensorRT Model Optimizer(简称 ModelOpt,https://github.com/NVID…
接下来介绍下从 FP16 模型 build FP8 Tensor-LLM engine 的过程。图中黄色部分代表通过 Modelopt toolkit 做 FP8 的权值转换,存出 Model_config,再通过 TensorRT-LLM 中的 From_json_file 和 Build_and_save 组件,将 Model_config 转成 TensorRT-engine。 在这个过程中,大模型通常会有 6 个部分用到 FP8。...
通过H100 Transformer Engine技术,配合TensorRT-LLM的H100 GPU使户能够轻松地将模型权重转换为新的FP8格式,并能自动编译模型以利用优化后的FP8内核。而且这个过程不需要任何的代码!H100引入的FP8数据格式使开发人员能够量化他们的模型并从大幅度减少内存消耗,而且不会降低模型的准确性。与INT8或INT4等其他数据格式相比...
本文将分享 TensorRT-LLM 中低精度量化内容,并从精度和速度角度对比 FP8 与 INT8。首先介绍性能,包括速度和精度。其次,介绍量化工具 NVIDIA TensorRT Model Optimizer(简称 ModelOpt)及其快速实现量化功能的方法。第三部分为 Debug。随后讲解 FP8 的 Deep-Dive,并进行
A1:目前 TensorRT-LLM 提供了两类方法,即 FP8 和刚才提到的 INT4/INT8 量化方法。低精度如果 INT8 做 GEMM 时,累加器会采用高精度数据类型,如 fp16,甚至 fp32 以防止 overflow。关于反量化,以 fp8 量化为例,TensorRT-LLM 优化计算图时,可能动自动移动反量化结点,合并到其它的操作中达到优化目的。但对于...
A1:目前 TensorRT-LLM 提供了两类方法,即 FP8 和刚才提到的 INT4/INT8 量化方法。低精度如果 INT8 做 GEMM 时,累加器会采用高精度数据类型,如 fp16,甚至 fp32 以防止 overflow。关于反量化,以 fp8 量化为例,TensorRT-LLM 优化计算图时,可能动自动移动反量化结点,合并到其它的操作中达到优化目的。但对于前...
对于Hopper架构,并且使用FP8量化的模型,可以考虑开启use_fp8_context_fmha,以使用FP8 Context FMHA Kernel,对Prefill阶段进行加速。这个功能目前只支持Hopper架构,期待TensorRT-LLM能够在更多有FP8的架构上支持FP8 Context FMHA。该功能主要影响首Token时延。
在数据格式优化方面,TensorRT-LLM通过Transformer引擎自动将模型转换为FP8数据格式。这种数据格式相比传统的FP32格式,可以显著减少内存占用和计算量,从而提高推理速度。此外,TensorRT-LLM还支持多种AI核心(AI Kernel),包括SmoothQuant、FlashAttention、fMHA等,这些核心可以进一步提高LLM的推理性能和准确性。 在实际应用中,Te...
模型的规模呈指数级增长,管理计算资源至关重要。TensorRT-LLM的量化支持允许使用较低的精度(如FP8)进行计算,TensorRT-LLM在资源消耗、执行速度和模型精度之间实现了良好的平衡。这不仅加快了推理速度,还减少了内存使用,这对于在受限环境中部署大型模型至关重要。
模型的规模呈指数级增长,管理计算资源至关重要。TensorRT-LLM的量化支持允许使用较低的精度(如FP8)进行计算,TensorRT-LLM在资源消耗、执行速度和模型精度之间实现了良好的平衡。这不仅加快了推理速度,还减少了内存使用,这对于在受限环境中部署大型模型至关重要。