tan的两倍角公式为:tan = 2tanθ / 。详细解释如下:在三角函数领域中,倍角公式是一类重要的公式,用于表达一个角的倍数的三角函数与该角本身三角函数之间的关系。其中,tan的两倍角公式是其中一个重要的公式。这个公式描述了如何根据已知的tan值来计算两倍的该角度的正切值。这在几何学和三角...
若$$ \tan \theta = 2 $$,则$$ \tan 2 \theta = \_ . $$ 相关知识点: 试题来源: 解析 4.- $$ \frac { 4 } { 3 } $$解析$$ \tan 2 \theta = \frac { 2 \tan \theta } { 1 - \tan ^ { 2 } \theta } = \frac { 2 \times 2 } { 1 - 2 ^ { 2 } } =...
Doubtnut is the perfect NEET and IIT JEE preparation App. Get solutions for NEET and IIT JEE previous years papers, along with chapter wise NEET MCQ solutions. Get all the study material in Hindi medium and English medium for IIT JEE and NEET preparation ...
theta = \sqrt { 2 } 或 \tan \theta = $$ $$ - \frac { \sqrt { 2 } } { 2 } $$.又角θ的终边在第三象限,故$$ \tan \theta = \sqrt { 2 } , 故 s i n ^ { 2 } \theta + $$ $$ \sin ( 3 \pi - \theta ) \cdot \cos ( 2 \pi + \theta ) - \sqrt {...
二倍角正切公式为tan2θ=2tanθ/(1-tan^2θ)。半角公式:半角公式是指将一个角的正弦、余弦或正切函数表示为另一个角的正弦、余弦或正切函数的公式。具体来说,设 $\theta$ 为一个角,则其正弦、余弦和正切的半角公式如下:\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}} ...
यदि tan 2theta. tan 3theta = 1 है, जिसमे 0^(@) lt theta lt 90^(@) है, तो theta का मान है-
【解析】 解析:∵$$ \tan 2 \theta = \frac { 2 \tan \theta } { 1 - \tan ^ { 2 } \theta } = - 2 \sqrt { 2 } , $$ ∴$$ \tan \theta = - \frac { \sqrt { 2 } } { 2 } $$或$$ \tan \theta = \sqrt { 2 } $$ ∵$$ \frac { \pi } { 2 } + 2...
Prove that: sin^2theta=sin^2alpha ,thentheta=npi+-alpha,n in Z 01:59 Write the values of x in[0,pi] for which sin2x ,1/2a n dcos2x are in A... 03:35 Prove that: tan^2theta=tan^2alpha ,theta=npi+-alpha,n in Z 01:01 Prove that: cos^2theta=cos^2alpha thentheta=npi...
17.解:$$ \frac { 2 \cos ^ { 2 } \frac { \theta } { 2 } - \sin \theta - 1 } { \sqrt { 2 } \sin ( \theta + \frac { \pi } { 4 } ) } = \frac { \cos \theta - \sin \theta } { \cos \theta + \sin \theta } = \frac { 1 - \tan \theta } ...
Kostrykin, V., Makarov, K.A., Motovilov, A.K.: A generalization of the \(\tan 2\Theta \) theorem. Oper. Theory: Adv. Appl. 149 , 349–372 (2004)Kostrykin V, Makarov KA, Motovilov AK (2004) A generalization of the tan 2θ theorem. Oper. Theory: Adv. Appl. 149: 349-...