Swin是在Window当中单独去做Window Attention。与Vit不同,本Window内的Visual Tokens去算自己内部的attention,这和Vit的Multi-head attention没有本质区别。但这里Windows之间是没有交互的。Window 1中的元素,看不到Window 4的信息。 Only W-MSA 注意:如果windows之间不交互信息,即window不做Shifted window,可能会有影...
而Block具体结构如右图所示,主要是LayerNorm,MLP,Window Attention和Shifted Window Attention组成 (为了方便讲解,我会省略掉一些参数) class SwinTransformer(nn.Module): def __init__(...): super().__init__() ... # absolute position embedding if self.ape: self.absolute_pos_embed = nn.Parameter(t...
捋一捋Swin Transformer CodeLearner 华中科技大学 电子信息硕士51 人赞同了该文章 目录 收起 0 前言 1 整体结构 1.1 PatchEmbed 1.2 BasicLayer 1.2.1 Swin Transform Block Window Attention Shifted Window Attention Relative Position Bias 1.3 Patch Merging 2 实验&结论...
如果说Shifted Window是Swin Transformer的精华,那么Attention Mask则可以算作是Shifted Window的精华。Attention Mask主要干的事就是设置合理的mask,使得Shifted Window Attention在与Window Attention相同的窗口个数下,得到等价的计算结果。如下图所示,分别给SWA和WA加上index后,再计算window attention的时候,希望有相...
Swin Transformer中最重要的模块是基于移动窗口构建的注意力模块,其内部结构如下图所示,包含了一个基于移动窗口的多头自注意力模块(shifted windows multi-head self attention, SW-MSA)和基于窗口的多头自注意力模块(W-MSA),其他的归一化层和两层的MLP与原来保持一致,并使用了GELU激活函数。
Swin Transformer还有一个关键设计元素,就是在连续的同尺度self-attention层使用移位窗口分区(shifted window partition)。类似于对分组卷积的分组间通信优化,移位窗口能够促进前一层的窗口之间的特征融合,从而显著提高建模能力。常见的基于滑动窗口(sliding window)的自注意力,由于每个query对应的key集不同,所以都要...
transformer应用到CV的优势全局的感受野(计算量很大),可实现平移不变,但无法做到尺度不变,猜测这也是DETR对小目标检测效果不太好的原因。 鉴于以上分析,Swin transformer (Shiftedwindowtransformer, 暂且简称SWTR)构造了层次结构网络、window multi-head self-attention,构造新的CV backbone。
2.1 基于shifted window的self-attention 这就是上边网络结构图中的W-MSA。传统的Transformer是基于全局...
通过仔细的画图分析才终于搞懂Swin-Transformer的shifted-window self-attention的算法和背后原理,上次读到这么令人兴奋的论文还是3年前,敬请期待Swin-Transformer的解读文章。 发布于 2021-03-30 23:24 赞同20 分享收藏 写下你的评论... 2 条评论 默认 最新 huxiao64 画图用什么软件呢 2023-06...
其中最主要的点就是swing transformer block是啥。 swing transformer block实际上是由两层组成的,第一层就是一个简单的transformer block(self attention+feedforward),第二层结构类似第一层,只不过attention层变成了shift window multihead self attention,本质上就是比前面的那个self attention多了一个shift功能。