Swin Transformer是一种基于 Transformer 的视觉模型,由 Microsoft 研究团队提出,旨在解决传统 Transformer 模型在计算机视觉任务中的高计算复杂度问题。其全称是Shifted Window Transformer,通过引入分层架构和滑动窗口机制,Swin Transformer 在性能和效率之间取得了平衡,广泛应用于图像分类、目标检测、分割等视觉任务,称为...
shifted_x=torch.roll(x,shifts=(-self.shift_size,-self.shift_size),dims=(1,2)) 具体的一个阶段,不管输入第一个swin transformer block还是第二个swin transformer block。都需要对图片进行分区,以实现只在窗口内计算注意力的效果,分区代码如下: defwindow_partition(x,window_size):"""Args:x: (B, H,...
具体地,就是先通过一种特征图移位 (cyclic shift) 的方式来对窗口进行移动,移动后window由多个不相邻的sub-window组成,这里,作者又提出了一种attention mask的机制来实现前述设计,这使得能够在保持window个数不变的情况下,最后的计算结果是等价的。efficient batch computation approach如下图所示:Cyclic Shift ...
Swin Transformer的基础架构示意图 Swin Transformer中最重要的模块是基于移动窗口构建的注意力模块,其内部结构如下图所示,包含了一个基于移动窗口的多头自注意力模块(shifted windows multi-head self attention, SW-MSA)和基于窗口的多头自注意力模块(W-MSA),其他的归一化层和两层的MLP与原来保持一致,并使用了GELU...
5.SW-MSA(Shifted Window) (1)做窗口滑动 (2)mask (3)还原shift 6.PatchMerging 7.分层计算(执行后续的Block) 8.输出层 Swim Transformer是特为视觉领域设计的一种分层Transformer结构。Swin Transformer的两大特性是滑动窗口和层级式结构。 1.滑动窗口使相邻的窗口之间进行交互,从而达到全局建模的能力。
swing transformer block实际上是由两层组成的,第一层就是一个简单的transformer block(self attention+feedforward),第二层结构类似第一层,只不过attention层变成了shift window multihead self attention,本质上就是比前面的那个self attention多了一个shift功能。
然后利用提出的 swin-transformer 模块进行特征学习。该模块与常规 transformer layer 的不同之处在于 shifted windows。一个 Swin-transformer block 包含一个 shifted window based MSA module,2-layer MLP with GELU non-linearity。 2.1. Shifted Window based Self-Attention:...
1、将transformer从CV下游任务如分类(ViT)、检测(DETR)上升到了backbone。 2、多stage的shift window将CNN的层次结构、局部感受野引入transformer 3、局部attention解决transformer计算量太大的问题。 5.2 劣势 1、CNN的还有一个特性是参数共享,Swin transformer的各个窗口的参数还不是共享的。
Swin transformer块 Swin transformer中使用的块用Window MSA (W-MSA)和shift Window MSA (SW-MSA)模块取代了ViT中使用的标准多头自注意力(MSA)模块。Swin Transformer模块如下图所示。Swin transformer块有两个子单元。第一个单元使用W-MSA,第二个单元使用SW-MSA。每个子单元由一个规一化层、一个注意力模块、...
Shifted Window Attention 前面的Window Attention是在每个窗口下计算注意力的,为了更好的和其他window进行信息交互Swin Transformer不引入了shifted window操作。 左边是没有重叠的Window Attention,而右边则是将窗口进行移位的Shift Window Attention。可以看到移位后的窗口包含了原本相邻窗口的元素。但这也引入了一个新问题...