Swin Transformer是一种基于 Transformer 的视觉模型,由 Microsoft 研究团队提出,旨在解决传统 Transformer 模型在计算机视觉任务中的高计算复杂度问题。其全称是Shifted Window Transformer,通过引入分层架构和滑动窗口机制,Swin Transformer 在性能和效率之间取得了平衡,广泛应用于图像分类、目标检测、分割等视觉任务,称为...
由于Transformer在NLP中惊人的表现,于是人们企图将Transformer这种结构引入到视觉领域,Vision Transformer(ViT)便完成了这个工作,他将图片分成一个一个小块,并将每个小块视为一个单词,后续结构和Transformer完全一致,不过ViT只使用了Encoder部分(使不使用Encoder需要根据我们的任务来决定)。并且文章验证,当数据集比较大时,T...
如上图所示,第一个Swin Transformer block,由LayerNorm、W-MSA和MLP组成,W-MSA即Windows MSA,可以理解为分窗的多头注意力。第二个Swin Transformer block跟第一个block基本一样,只是将W-MSA换成了SW-MSA,即Shifted Windows,可以理解为移位的窗口多头注意力。Shifted Windows也正是Swin Transformer的命名由来。...
. Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window ap...
5.SW-MSA(Shifted Window) (1)做窗口滑动 (2)mask (3)还原shift 6.PatchMerging 7.分层计算(执行后续的Block) 8.输出层 Swim Transformer是特为视觉领域设计的一种分层Transformer结构。Swin Transformer的两大特性是滑动窗口和层级式结构。 1.滑动窗口使相邻的窗口之间进行交互,从而达到全局建模的能力。
将Transformer中的多头注意力模块换成了窗口多头注意力(WIndow-MSA)和移动窗口多头注意力(Shifted Window-MSA) 只在窗口中做自注意力能够减少计算复杂度,但是这将减少跨窗口的连接,减少模型建模能力,因此在两个利纳许的SwinTransformer Blocks中交替使用两种划分的移动窗口。
高效的计算:窗口化的自注意力机制极大地减少了计算量,使得 Swin Transformer 可以应用在高分辨率图像上。多尺度特征提取:类似于 CNN 的分层设计,使 Swin Transformer 适合在视觉任务中提取多尺度特征。跨窗口信息融合:通过 Shifted Window 机制,Swin Transformer 可以在多个窗口间传递信息,实现更大的感受野。总结 S...
Swin Transformer 1、motivation CNN的优势是平移不变、尺度不变、层次感受野; transformer应用到CV的优势全局的感受野(计算量很大),可实现平移不变,但无法做到尺度不变,猜测这也是DETR对小目标检测效果不太好的原因。 鉴于以上分析,Swin transformer (Shiftedwindowtransformer, 暂且简称SWTR)构造了层次结构网络、window ...
swing transformer block实际上是由两层组成的,第一层就是一个简单的transformer block(self attention+feedforward),第二层结构类似第一层,只不过attention层变成了shift window multihead self attention,本质上就是比前面的那个self attention多了一个shift功能。
Shifted Window based MSA 实验结果 总结 前言 本文介绍了一种称为Swin Transformer的新型transformer,通过引入CNN中常用的层次化构建方式构建层次化Transformer以及引入locality思想解决transformer迁移至CV上的scale和分辨率的问题。该方法屠榜各大CV任务,代码已公布。