在STM32上使用HAL库进行串口DMA接收时,需要按照以下步骤进行配置和处理: 初始化STM32 HAL库和串口: 首先,需要初始化HAL库和串口(USART)。这包括配置串口的波特率、数据位、停止位、校验位等参数。以下是一个示例代码,用于初始化USART2: c UART_HandleTypeDef huart2; huart2.Instance = USART2; huart2.Init...
从外设数据寄存器或者从当前外设/存储器地址寄存器指示的存储器地址取数据,第一次传输时的开始地址是DMA_CPARx或DMA_CMARx寄存器指定的外设基地址或存储器单元; 存数据到外设数据寄存器或者当前外设/存储器地址寄存器指示的存储器地址,第一次传输时的开始地址是DMA_CPARx或DMA_CMARx寄存器指定的外设基地址或存储器单元...
HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) 1. 串口空闲中断(IDLE): 当DMA串口接收开始后,DMA通道会不断的将发送来的数据转移到主存,那么问题来了,该如何判断串口接收是否完成从而及时关闭DMA通道?如何知道接收到数据的长度?答案便是使用串口空闲中断。
从外设数据寄存器或者从当前外设/存储器地址寄存器指示的存储器地址取数据,第一次传输时的开始地址是DMA_CPARx或DMA_CMARx寄存器指定的外设基地址或存储器单元; 存数据到外设数据寄存器或者当前外设/存储器地址寄存器指示的存储器地址,第一次传输时的开始地址是DMA_CPARx或DMA_CMARx寄存器指定的外设基地址或存储器单元...
2. 配置 DMA 接收 虽然我们使用的CubeMx来配置DMA,但只是配置DMA模式为串口到内存,所以还需要在程序中进一步指定:DMA具体搬运到内存的哪一个位置中,我们建立一个数组用以存放DMA搬运的串口数据,并使用HAL_UART_Receive_DMA()函数来配置,具体代码如下所示: ...
配置DMA:选择DMA通道和请求源,设置为循环模式,以便连续接收数据。 配置NVIC:设置DMA中断和串口空闲中断的优先级,并使能。 3. 代码实现 3.1 初始化串口和DMA #include "stm32f1xx_hal.h" UART_HandleTypeDef huart1; DMA_HandleTypeDef hdma_usart1_rx; void SystemClock_Config(void); static void MX_GPIO_Ini...
接收时,可以调用HAL_UART_Receive_DMA函数,如下图: 这里我们可以在断点停止时,用串口调试助手发送20个字节数据,当再次运行时,可以看到rx_data里的数据发生了变化,说明DMA在CPU未运行时也在收数据。 另外,还可以看到,因为设置了循环收16个字节,但是发送了20个字节,所以16个字节之后的4个字节又覆盖了头4个字节: ...
3.2 DMA接收 void my_uart1_enable_inpterr() { HAL_UART_Receive_DMA(&huart1, &my_uart1_redata, 1); } 这个函数用于开启串口接收中断。 4. 总结 通过上述步骤和代码示例,您应该能够使用STM32的HAL库实现串口通信和DMA传输。这些功能使得STM32能够灵活地进行串口数据的发送和接收,适用于各种应用场景。希望...
接收数据逻辑图 下面是使用STM32 HAL库进行配置,大致实现思路都是一样的,先开启串口初始化(开启DMA传输),相应的DMA初始化,然后设置好传输地址,传输字节个数,然后启动使能 一、初始化部分 uint8_t u8txbuff[1024]; //发送缓冲区 uint8_t u8rxbuff[1024]; //接收缓冲区 ...